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Abstract

  The Human Odometer is a personal navigation 
system developed to provide reliable, lightweight, 
cost-effective, and embedded absolute 3-D position 
and communication to fi refi ghters, policemen, 
EMTs, and dismounted soldiers. The goal of the 
system is to maintain accurate position information 
without reliance on external references. The Human 
Odometer system provides real-time position 
updates and displays maps of relevant areas are 
to the user on a handheld computer. The system 
is designed to help a user place himself in a global 
context and navigate unknown areas under a variety 
of conditions. This paper provides a quantitative 
analysis of the in-fi eld operational performance of 
the system.
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Introduction
 The Human Odometer is a personal navigation system 
currently under development at Carnegie Mellon University’s 
Field Robotics Center1. When worn, the system provides real-time 
position updates and displays maps of relevant areas are to the user 
on a handheld computer. The system is designed to help a user place 
(localize) himself in a global context and navigate unknown areas 
under a variety of conditions. 

 Consumer personal navigation systems are quickly becoming 
ubiquitous; however, the technology has yet to be developed where 
it is needed most: in demanding and unforgiving environments. 
While current systems are used mainly for recreational purposes 
and as a matter of convenience, they have the potential to be life 
saving devices for personnel such as fi rst responders. Unfortunately, 
they do not offer the reliability and accuracy demanded by hazard 
workers. The Human Odometer resolves these problems by using 
a novel combination of both GPS positioning and human walking 
analysis (pedometry).

 While it makes use of GPS data whenever possible, the 
Human Odometer is also designed for robust localization when 
GPS is unavailable or unreliable. Pedometry data from inertial 
measurement sensors on the user’s body are used to track motion 
using kinematic models of walking, running, and other common 
modes of motion. Due to the nature of inertial measurement, the 
pedometry system is extremely reliable, complementing the major 
fault of GPS. If position data from both systems is available, the two 
measurements are compared and fused. In addition to providing a 
robust localization method this also provides the ability to estimate 
a user’s positional uncertainty.

 To date, most tests of the Human Odometer have been done in 
very limited, controlled conditions, and in conditions in which only 
an approximate measure of accuracy was possible. The purpose of 
this analysis is to determine the accuracy of the Human Odometer 
under a variety of less limited conditions. Tests were conducted 
on both fl at and broken ground, while the test subject was walking 
and running. This allowed the analysis to cover more complicated 
modes of motion. Data was post-processed using the Human 
Odometer’s localization strategies with and without integration of 
GPS data, to simulate conditions in which GPS data might be sparse 
or unavailable as well, as well as to simulate conditions when GPS 
coverage might be excellent. 
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1Please refer to 
Appendix A for a 
detailed survey of 
current personal 
navigation 
technologies and 
to Appendix B for 
a comprehesive 
description of the 
Human Odometer 
Hardware 
Specifi cations .
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Test System and Procedure
 Test runs for the Human Odometer system were conducted at 
Fort Indiantown Gap National Guard Training Center in Lebanon 
County, Pennsylvania. Flags were placed in the ground at selected 
survey points. These positions were mapped with high precision 
differential GPS. The survey positions for two test locations are 
shown in Figures 1 and 2, below. These locations were referred 
to at the training center as the “football fi eld” and “gravel pit”, 
respectively. (The system was also tested at the ARL robotics 
facility at the training center; however, these runs were conducted 
without previously surveyed points. These results are also included 
in this report.)

 The football fi eld is an area of uneven ground and weeds, 
creating a more challenging course for the tester. The gravel pit 
was a fl at, empty area covered, appropriately enough, with a layer 
of gravel. Flags are numbered according to the order in which they 
were to be visited by the tester. Wearing the Human Odometer, 
the tester walked or ran each surveyed course several times.  The 
system stored complete data from all measurement devices (both 
GPS and motion sensors) in a set of device data logs.  These logs 
have been used in this report to reconstruct pedometry and position 
estimates in order to fully characterize the performance of the 
Human Odometry system under a wide variety of terrain types and 
environmental conditions2.

2Please refer to the 
VTI TestPlan in 
Appendix C for the 
comprehesive system 
test procedure used at 
Fort Indiantown Gap.



Figure 1. Football Field Flag Placement

Figure 2. Gravel Flag Placement
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FTIG Test Results 
 Included below are the graphical representations of the 
pedometry data and the GPS data along with annotations about 
the specifi c runs. The only treatment of the pedometry data was to 
manually realign some of the initial headings that became corrupted, 
or were severely disparate with the true value. 

 Normally, a system initialization phase would reject such 
errant heading values and calibration misalignments until an 
acceptable value was determined. However, during the trials data 
was recorded without any error handling, and no feedback was 
provided to the tester on the accuracy of the initial heading value. 
Occasional corrupted data (both GPS and pedometry) in the log 
fi les were also automatically fi ltered out during the system analysis. 
Disregarding the corrupt log data for performance calculation is 
consistent with the robust operational specifi cation of the Human 
Odometer. 

 During several of the runs, the gyroscope, which is used to 
determine heading, failed and either started recording partially 
corrupt or nonsensical data. Since the gyroscope performance 
is usually quite robust, it is likely that the freezing temperatures 
(noted at 21 degrees Fahrenheit during testing) caused fl uctuations 
in the power output of the batteries. It is possible that these power 
fl uctuations caused the gyroscope to spontaneously reset (when 
power dropped below the required threshold) as well as caused 
the gyroscope to exhibit other peculiar behavior. This behavior is 
correctable with better power regulation on all hardware destined 
for use in extreme temperatures.

 When possible, the partially corrupted gyro data was 
reconstructed as-is, and the point of failure is marked accordingly 
on the graph of the affected trial. In the graph, it is clear that 
the system is no longer within functional specifi cation after the 
failure of the gyroscope component. However, because of the 
extreme conditions which lead to this error, we do not believe that 
these failures are an accurate refl ection of the Human Odometer 
performance. Thus, data recorded after such a failure is not 
indicative of the real system performance and is not included in the 
mathematical analysis of the system. 

 As mentioned above, the runs at the ARL building were 
made without surveyed fl ags. In addition, the GPS signal was of 
particularly low quality in the fi rst test at that location (Figure 10) 
as part of the test took place inside a building, where there was 
poor or nonexistent GPS coverage. The second run (Figure 11) was 
conducted around the perimeter of a building as well as inside, and 
included fair GPS coverage along half of the path.  The purpose of 
these runs was to collect data with actual GPS outages, in order to 
complement our experiments with simulated outages.

An Analysis of the Human Odometer

September 18, 2005

10



Figure 3. Football Field – Trial 1

Trial 1 of the Football Field course used a moderate walking pace to 
trace the path. The run was quite uneventful and there were no notable 
deviations from the intended course.
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Figure 4. Football Field – Trial 2

 Trial 2 of the Football Field course used a fast walking pace. 
A rough and notably sparse GPS signal persisted throughout the entire 
run. In addition, the tester tripped at one point during the middle of the 
run causing a brief amount of poor pedometry data.
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Figure 5. Football Field – Trial 3

 Trial 3 of the Football Field course was conducted with a 
moderate walking pace. The gyro failed during the fi rst third of the trial 
and the location of failure is noted above. 
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Figure 6. Football Field – Trial 4

 A jogging pace was used during Trial 4 of the Football Field 
course. Gyro failure occurred fairly early on in this trial, making much 
of the later data unreliable. The tester also stopped for a short rest from 
jogging near fl ag point 6. However, this anomaly is overshadowed by 
the erroneous data caused by the failed gyro. 
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Figure 7. Football Field – Trial 5

 Trial 5 of the Football Field course was conducted using a 
moderate walking pace. The tester tripped during the fi rst few steps 
causing an initial heading misalignment, but this misalignment which 
was quickly rectifi ed. Unfortunately, gyro failure also occurred along 
with data corruption after the second fl ag. A brief run was reconstructed 
using only the reliable data.

Section 3: FTIG Test Results

September 18, 2005

15



Figure 8. Gravel – Trial 1

 Trial 1 of the Gravel course used a slow to moderate walking 
pace. Poor quality GPS data was observed during the beginning of the 
run, but most of the trial went according to plan. 
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Figure 9. Gravel – Trial 2
 
 Trial 2 of the Gravel course used a “Regular Walking” pace. The 
run was relatively uneventful with the exception that poor quality GPS 
data was observed toward the end of the run. In fact, in this case the 
path traced by the pedometry output more closely resembles the path 
walked by the tester.
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Figure 10. ARL Facility – Trial 1

 The fi rst run conducted in the ARL Robotics Facility used a 
“Regular Walking” pace. Most of the trial, with the exception of the 
beginning and end, was conducted inside of a building, making the 
GPS data of extremely poor quality. The pedometry data more closely 
resembled the true path traveled than did the GPS data.
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Figure 11. ARL Facility – Trial 2

 The second test conducted in the ARL Robotics Facility also 
used a moderate walking pace. In this run, a problem with extremely 
inconsistent initial GPS points was fi ltered and so the starting location 
was manually entered where the good data began. A GPS outage 
occurred from near the fi rst sharp turn until near the end of the trial.
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 Table 1, which follows, shows general statistics for all the trials 
conducted. The Final Position Difference is the Euclidean distance 
between the surveyed stopping location and the reported stopping 
location of the human Odometer. In the case of the ARL trials, this is the 
Euclidean distance between the fi nal GPS point and the corresponding 
pedometry point at that timestamp. Distance Traveled is the total 
number of meters walked during the course of the trial and Trial Time is 
the duration of the run in seconds. 

Table 1. General Trial Statistics
*statistics recorded before gyroscope failure
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Pedometry Analysis
 The data for all test runs was post analyzed in order to 
calculate several statistics used to gauge system performance. 
Specifi c concern was given to characterizing the system to quantify 
error and uncertainty in every degree of freedom (heading and 
positional x-y coordinates). In order to characterize the performance 
of the system, there must be an accurate point of comparison. While 
the ideal point of comparison is “ground truth” – the exact and 
actual path walked – this information does not exist except in the 
form of the surveyed fl ag positions. With only 6 to 8 fl ag points, a 
reliable performance characterization is diffi cult for the path walked 
between the points. Fortunately, the majority of test runs included 
excellent GPS data, despite the overcast conditions at the site.  With 
a few noted exceptions, GPS coverage frequently included 6 to 8 
satellites. While the system as a whole has not been characterized, 
GPS itself (a proper “subsystem” of the Human Odometer) has been 
measured and analyzed by research institutions for many years. 
Therefore, knowing the unique properties of the GPS signal with 
respect to ground truth, the GPS data collected during the trials 
along with the handful of ground truth beacons can actually be 
used to infer the characteristics of the pedometry subsystem, which 
has not yet been characterized. We can then infer a total system 
performance from the combination of both subsystem performances. 

 The characterization of the pedometry subsystem itself is 
of particular interest as GPS is accurate, but often unavailable. 
Therefore the performance of the pedometry subsystem is, in many 
cases, the performance of the entire Human Odometer system3. A 
realistic simulation of the entire system with an intermittent GPS 
signal that follows form this fact, will be covered in the fourth 
section of this report, Filtered System and GPS Outage Analysis. 
Please refer to [2] for a more detailed explanation of statistical 
methods used in the following analysis.

 A calculation of the heading disparity between the GPS data 
and the pedometry data, the Heading Offset Mean is a measure 
mostly of human error in initial alignment of the pedometry 
system to a true value. It is calculated by running the data through 
a Heuristic Heading Filter (HHF) which extrapolates an average 
heading from consecutive GPS readings every 10 meters using 
simple trigonometry (arctangent(y/x)). The GPS heading, which is 
assumed to be true, is compared a posteriori to the heading given 
by the gyroscope which produces a value representing a local 
heading difference. This is factored into a global heading offset, 
which represents a predicted disparity in system heading, via a 
weighted arithmetic mean. The predicted system offset is then used 
to adaptively correct heading drift and also compensate for initial 
alignment errors. Please refer to Table 2 for the calculated offsets of 
the trial runs. 
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3 Conversely, this is 
never the case with 
a raw GPS signal. 
The benefi t of the 
pedometry system lies 
in that it will never 
cease to function 
and its performance 
is never dependant 
on environmental 
conditions.



 The Heading Standard Deviation is a measure of the 
system heading accuracy and drift. Accuracy is defi ned as 
the degree of correlation between gyroscopic heading and GPS 
heading after removing the offset bias[1]. As such, it is calculated 
by taking the standard deviation  of all local offsets produced by 
the HHF4. The heading deviation data in Table 3 suggests that 
we should expect, on average, 68.2%5 of heading readings to be 
within 9.89 degrees of the true value. This is a raw system error, 
without correction from GPS, of about 2.7%. This value may also be 
infl ated, as the GPS (which is assumed to be perfectly accurate) is 
also subject to a small but factorable signal variation.  

 Positional Standard Deviation is a measure of the system 
positional accuracy. Specifi cally, it quantifi es the expected 
variation of location in UTM Easting and UTM Northing 
coordinates from the true value. This value is calculated at every 
GPS reading by comparing the current location as given by the 
pedometry system (calculated since the last GPS reading) and 
the current GPS position. The standard deviations of all the axial 
component differences are then calculated. The results show that 
between two GPS readings, the UTM Easting value of position 
is expected to be within 3.69 meters and the Northing value to 
be within 3.49 meters of the GPS position 68.2% of the time. 
At an average GPS frequency of one reading every six seconds, 
as evidenced during testing, this translates to a compounding 
pedometry uncertainty of 0.61 meters (2.0ft) in the East direction 
and 0.58 meters (1.9ft) in the North direction every second. 
However, since the aggregate values (3.69m and 3.49m) are 
on the same magnitude as the statistical uncertainty of the GPS 
readings themselves (~ 2m), the deviation of the GPS signal 
must be subtracted to fi nd the real accuracy of the pedometry 
system with respect to ground truth. After compensating for the 
deviation of the GPS signal in the pedometry signal variances, an 
average axial uncertainty of ~1.5m every six seconds is obtained, 
making the system slightly more accurate than GPS for short 
to medium distances. Note that due to the nature of the system, 
which uses a stride length in conjunction with a heading as opposed 
to independent axial measurements, mean values of the positional 
standard deviation should be statistically insignifi cant between 
East and North coordinates. The data collected agrees with this 
proposition. 

 The standard deviation values in Table 4 and Table 5 are 
combined using a simple Cartesian distance6 to obtain a worst-case 
stride length error. This error is recorded in Table 6 as the Step 
Standard Deviation. This is an estimate of how well each stride’s 
predicted length resembles the true stride length of the stride, which 
is derived from GPS. This is a particularly “bad case” measurement 
as we assume that readings in both axes are exhibiting behavior 
along the limits of the expect value. The data shows that with an 
average GPS frequency of 1/6 Hz and an average of 2.0 steps a 
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4 The standard 
deviation is calculated 
using the formula

  .

5 The percentage of 
points corresponding 
to one standard 
deviation.



second, we can expect each step to be within 0.43m (1.4ft) of the 
true stride length. 

Table 2.

Table 3.
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6 Cartesian distance 
is calculated using 
the formula



Table 4.

Table 5.

Table 6.
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Filtered System and GPS Outage Analysis
 The Human Odometer makes use of GPS points to help correct 
heading and positional errors as well as compensate for initial 
heading offsets. An initial sample of GPS readings greatly enhances 
the accuracy of the pedometry data. Under normal circumstances, a 
semi-reliable GPS signal with moderate frequency is suffi cient 
to keep the system from drifting and provides an optimal 
estimation of position between GPS updates. However, a GPS 
reading may not be available for some extended period, for example 
during use in a building. During these periods, the system is 
expected to continue to perform reliably. 

 Simulated tests were conducted on the full Human Odometer 
system to measure resilience against prolonged GPS outages. 
Pedometry data was fused with GPS data using the HHF and an 
Extended Kalman Filter (EKF)7  during an initial calibration phase, 
during which the heading and stride-length biases are calculated. 
After this, the GPS is data is “turned off” and the pedometry 
allowed to run until the end of the trial. The graphs in Figure 12 
and 14 show the “total system output” which incorporates all 
GPS and pedometry data along the entire length of the path and is 
representative of system performance with a good GPS signal on 
negotiable terrain. The graphs in Figure 13 and Figure 15 show 
the result of correcting for the heading offset and stride length 
bias with only a small amount of initial GPS data. The GPS data, 
which is considered a good estimate of ground truth8, is also plotted 
for comparison. It is notable that the pedometry performs almost 
as well as a high quality GPS signal, indicating the the Human 
Odometer exhibits near GPS performance in situations where GPS 
is unavailable.
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7 The Extended 
Kalman Filter is 
a mathematically 
optimal method 
of fusing two 
estimates of location 
(pedometry and 
GPS) to produce a 
combined position 
and error estimate. 
The Kalman Filter 
can also estimate 
and correct for an 
offset in the stride 
length data. It is used 
in the full Human 
Odometer system for 
this purpose [3].



Figure 12. System Output for Football Field

Figure 13. System with Simulated Outages on Football Field
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8GPS data was a good 
estimate of ground 
truth for these specifi c 
trials. GPS accuracy 
depends on a wide 
variety of conditions 
and is normally 
signifi cantly less 
exceptional in quality 
and quantity. 



Figure 14. System Output for Gravel Pit

Figure 15. System with Simulated Outages on Gravel Pit
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Conclusion
 The Fort Indiantown Gap test of the Human Odometer served 
primarily as a proof of product, as well as establishing baseline 
performance characteristics of the system and providing insight into 
the limitations of the current hardware and software setup. 

 The basic operational aspects of the Human Odometer system 
were demonstrated and proven to be successful during strenuous 
testing. Running for an extend period of over 10 minutes, the system 
reported a cumulative error of less than 10 meters. This amounts 
to a drift rate of .05 feet per second, signifi cantly better than other 
pedometry and inertial-based solutions in the same price range. 
Performance was also shown to be stable and consistent over many 
runs and through system resets. 

 The fi eld test also provided the oportunity to assess the 
performance of the system’s localization algorithms and to verify 
the correctness of several theoretical assumptions made in the 
design of the software. Firstly, pedometry-based inertial motion 
detection has been shown to be a reliable short term estimate of 
position with a short-term expected uncertainty to be less than that 
of high precision GPS. Additionally, it has been shown even with 
a frequently updating GPS signal, pedometry provides consistently 
reliable positioning at a much fi ner granularity. Secondly, long term 
GPS data has been shown to provide a suitable basis for accurate 
heading correction and also step size parameter correction for the 
pedometry data. Lastly, the fusion of locally-optimal pedometry 
data with globally optimal GPS data provides an operationally 
robust method for human localization in dynamic and demanding 
environments.

 The FTIG tests also revealed a few areas of improvement and 
recommendations for future work. 

 Firstly, a correctable fl aw was discovered in the power 
regulation of the gyroscope where cold temperatures caused a drop 
in the power output of batteries. DC voltage converters were added 
to the system shortly after to remedy the problems with fl uctuating 
power.s. The voltage converters provide the clipping feature of 
standard linear regulators in addition to a step-up ability if the power 
output of the battery source ever falls below the required voltage. 
Power upgrades to the rest of the system are planned in the future. 

 Secondly, pedometry analysis suggested that further accuracy 
could be attained by a more principled approach to the calculation 
and correction of step size. In several of the runs, inaccurate step 
size prediction caused a scale disparity between the pedometry and 
GPS graphs. While the addition of GPS data attenuates the effect 
in the fused data, total system accuracy and reliability during GPS 
outages can be improved. Algorithms for learning and automatically 
adjusting step sizes for multiple users of a system are currently 
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being investigated. 

 Lastly, the current system does not factor elevation changes 
into the estimate of position. Small height discrepancies such those 
that are the result of uneven terrain, are detrimental to the accurate 
determinat of step size. While the experiment did not specifi cally 
test for particularly rugged terrain, it is believed that compensating 
for the user’s pose will greatly enhance the accuracy of the system9.

 

9The system is 
being developed to 
handle stairclimbing, 
but there are no 
immediate plans 
to factor in smaller 
altitude changes.
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Survey of Human Navigation Technology
 Human movement tracking technology can be divided into 
three main categories: Inside-Out (exteroceptive), Outside-In 
(proprioceptive), and Inside-In (interoceptive) sensors. Inside-
Out sensors measure internal state with respect to an external 
reference. These sensors include accelerometers, gyroscopes, and 
Global Positioning System (GPS). Outside-In sensors measure a 
person’s state by tracking externally detectable changes in pose 
and are generally the least obtrusive of the sensor types. Cameras 
and RF transmitters are examples of Outside-In technology. Inside-
In technology seeks to emulate internal feedback sensors like the 
nervous system to extrapolate body state from the movement of 
limbs. Inside-In sensors like fl ex-wires and potentiometers are rarely 
used in human localization as the sensors are neither a direct nor 
accurate measure of position and they often interfere with the user 
by providing points of resistance. 

 Personal navigation systems sometimes use a combination of 
sensors in the three categories to complement the weaknesses of 
the individual sensors, known as sensor fusion. However, the vast 
majority of systems today use Inside-Out sensors for their ease of 
deployment and relative accuracy. It is much more common to pair 
two Inside-Out sensors, one that detects natural sources and one that 
detects an artifi cial source. Natural source sensors detect changes 
in natural phenomena such as acceleration or magnetic orientation. 
Artifi cial source sensors detect changes with respect to synthetic 
phenomena such as a GPS signal or a radio beacon. Natural sources 
are usually noisy, but can be measured almost anywhere at anytime. 
Artifi cial sources can be made arbitrarily accurate, but are subject to 
signal availability problems [7]. 

 A brief survey of popular localization sensing solutions 
follows. 

GPS 
 Most commercial personal navigation systems rely primarily 
on the Global Positioning System. GPS is an absolute measure 
of position based on a global reference frame. GPS signals are 
provided by a grid of satellites in synchronous orbit and position 
is extrapolated by triangulation between the satellites. GPS is 
considered a fair measure of position, with 95% of readings falling 
within 10-meters accuracy for civilian uses [19]. Using WAAS, a 
method for improving on the accuracy of standard GPS, a 2-meter 
accurate signal can be achieved.

 GPS lends itself naturally to pedestrian navigation because the 
required hardware is small, affordable and accurate. However, GPS 
can only be used in environmental conditions where the receiver 
can detect clear signals from several satellites. This means that 
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GPS usability and accuracy are a direct function of the number of 
visible satellites and the prevailing weather conditions. While many 
systems use GPS in conjunction with another sensor, most use other 
types of data as a supplement a constant GPS stream. As such, a 
system relying primarily on GPS cannot normally be used inside of 
buildings or in cloudy weather. 

 GPS is widely available to the public in the form of 
lightweight, small form factor personal receiver units such as the 
Socket Bluetooth GPS and the Garmin GPS 17N [19, 20]. GPS 
receivers typically interface with a Handheld Computer which 
can then display user location information along with any maps 
available in a database. For most civilian uses, GPS itself is a 
suffi cient personal localization device. However, for hazardous 
use, the drawbacks of a 1-sensor system, especially if that sensor 
cannot work indoors, is immediately obvious. Therefore, it is 
common practice to combine GPS with another form of positional 
measurement such as pedometry, radio or inertial systems so that the 
system operates at a partial capacity at least most of the time. 

Inertial 
 Inertial sensors primarily measure the acceleration of the user. 
However, the position of a person relative to a starting location can 
be inferred by the double integration of the acceleration data. When 
mounted in an appropriate manner, three axial accelerometers in 
addition to three axial gyroscopes, usually packaged as an Inertial 
Measurement Unit (IMU) are suffi cient to track and position 
a person in three dimensions. While, position by integration 
of acceleration remains popular in mobile robotics, personal 
navigation systems using direct inertial measurements are becoming 
increasingly rare. Unlike robots which have a rigid body frame 
on which an accelerometer can be easily mounted, human bodies 
constantly shift and distort such that the sensor’s position relative 
to the body is not constant. A robot with a single axis accelerometer 
mounted in the direction of travel will always report an acceleration 
if the robot is moving. However, a human with a back-mounted 
accelerometer may not report any acceleration if the torso is turned 
while walking. To compensate for the uncertainty in sensor position 
with respect to the body pose, systems have been designed with tilt 
sensors, gyroscopes and GPS in addition to axially mounted inertial 
sensors [11]. While the additional sensors fi x the rigidity problem, 
they also add overall cost and weight to the navigation system. 
Moreover, there is still the problem with the double integration of 
a discrete signal. Double integration magnifi es small accelerative 
inaccuracies, present in all discrete systems, so that they compound 
and eventually amount to a signifi cant positional inaccuracy [13]. 
Currently, no commercial personal navigation systems use this 
approach to localization. 
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Pedometric
 Many personal navigation solutions today utilize the fact that, 
unlike most robots, humans move by actuating the legs and feet in 
an intentional fashion to take steps. Pedometry (step sensing) data is 
usually collected with inertial sensors mounted to detect the motion 
of the legs. Analysis reveals that certain positions on the leg always 
exhibit the same repeating motion/acceleration pattern unique to 
individual movement modes, called occurrences. Two consecutive 
occurrences denote that a step has transpired and movement is 
recorded in relation to the user’s step size. While the occurrential 
approach often uses inertial sensors, it detects pattern frequencies 
in the signal as opposed to using actual inertial values. Thus, 
pedometry is much more accurate than the direct inertial approach 
while retaining the ability of inertial sensors to be used anywhere 
[10]. 

 Using the graphical features of the acceleration profi le instead 
of the actual values does create additional complication however. 
Detection of a step alone is not enough to position a person in a 
space; the length of the step must also be known. One approach is to 
assume a fi xed step size for each individual user. If the assumed step 
size is very close to the true mean, this is generally an acceptable 
approach; however, accuracy suffers as the user traverses different 
types of terrain. The step size of user varies depending upon the 
inclination and consistency of the terrain and the mechanics of 
walking changes completely with a grade of more than 10% [4]. As 
personal navigation systems are intended to be used in hazardous 
situations and environments, this is serious problem. Consequently, 
most current pedometry research is being conducted in step-adaptive 
systems.

      The systems being developed by Kourogi and Kurata [15], 
Vildjoiunate [12], Randell [6], Bieber and Korten [13], Ladetto [8] 
and Jirawimut [14] are among those that utilize pedometry sensing. 
Variations in the commercial pedometry systems include placement, 
quantity and utilization of sensors. The complexity and quantity of 
sensors utilized to measure steps is usually correlated to the type 
and number of other positional sensors present in the system. 

 The simplest pedometry setup is a human center of gravity 
(COG) mounted IMU that measures antero-posterior motion (bumps 
in torso movement) [15]. Bump detection is popular because it 
requires only a single sensor; however, motion of the torso is not 
as prominent as that of the limbs, making feature extraction more 
diffi cult and output is prone to erroneous predictions. Standalone 
step detectors using this method are also made commercially, much 
like their GPS counterparts. The Dead Reckoning Module by Point 
Research (DRM) is one such sensor that combines an inertial sensor 
with a built-in bump detection function. Kourogi, Jirawimut and 
Ladetto all use the bump detection method. Kourogi’s system used 
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the bump detection method in addition to an impressive network of 
gyroscopic, magnetic and photo-correlative sensors simultaneously 
to produce an estimate of user position. Alternatively, Jirawimut and 
Ladetto both approached the localization problem traditionally by 
pairing pedometry with GPS to adaptively correct for step features 
and length.  

 Vildjoinuate and Beiber both use a single IMU mounted on 
one leg to detect steps. Single leg detection also requires only a 
single sensor; however it trades step accuracy for feature extraction 
ease. Leg motion exhibits more prominent acceleration peaks and 
troughs than torso motion, but by only sensing a single leg, this 
method does not provide for robust handling of false positives that 
may be produced when the user is turning in place or adjusting the 
sensor leg while standing still. In addition to the single leg sensor, 
Vildjoinuate and Beiber both use strategically placed infrared 
beacons for indoor positional correlation, while Vildjoinuate adds an 
additional magnetometer to track user heading. 

 Randell uses sensors mounted on both legs to both detect steps 
and adaptively scale step sizes. While the occurrence signatures 
remain the same for both feet during the process of walking, the 
delay between the detection of an occurrence on each foot is 
proportional to the step size. If the mean step size and occurrential 
delay is known, then the effective step size can be inferred by 
scaling the observed delay with the mean step size to delay ratio. 
The added sensor also provides the potential for operational 
redundancy which is a very appealing point for users in hazardous 
environments. 

Radio Frequency
 Radio localization systems consist of transponders and 
interrogators. Transponders (RFID Tags) are passive receiver/
transmitters that react to specifi c radio waves by producing a unique 
response signal induced by the fi rst. The interrogator is a transmitter 
that will broadcast the correct signal. With suffi cient signal 
coverage in an area, localization is achieved through response time 
triangulation of the user to various interrogators. 

 RFID sensors have the benefi t of not requiring an external 
power source as the interrogator’s signal is enough to activate the 
sensor. This in turn reduces the weight and size of sensors on the 
user. Most commercial RFID tags are thinner than paper and little 
larger than a quarter. While a radio solution provides the user low-
clutter GPS quality localization indoors, many groups have found 
that using RFID for fi eld use is impractical. RF Transponders are 
large and must be installed in the fi eld around the area of interest 
before the system can be used. This creates additional external setup 
time and complexity to deploying the system that is detrimental to 
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the design of mission critical systems.    

 Several commercial radio solutions are currently available. 
The seven.Five platform by Comarco Wireless is a commercially 
available indoor navigation system that couples standard RFID with 
inertial sensing [16]. However, a price tag of $20,000 makes this 
solution a very costly investment. The Ensco Ranger is a limitedly 
available precise RF localization system with an operational range 
of more than a kilometer and 8-inch precision. The system also uses 
available outdoor geophysical information when connected to an 
electromagnetic detector [17].   

Laser
 Laser scanners have long been used on mobile robotics to 
make 3D maps of spaces. A point laser, which measures distance, is 
fi red many times about an arc which is then adjusted to a different 
pitch and the process is repeated to produce a discrete, point 
representation a 3D void.  In addition to providing mapping via 
point clouds, they are also exceptionally accurate at determining 
distances to landmarks which can be used for relative localization. 
However, use of laser scanners on humans poses many problems. 
Most notably, laser scanners are large and require similarly 
unwieldy support and computation equipment. Secondly, laser 
scanners only produce location data in reference to previously 
surveyed landmarks. If the geographic locations of the landmarks 
are poorly measured, the system will be adversely affected. Lastly, 
the laser scanner is a short range sensor with a max distance of 
around 80m and an effective detection distance of much less [21].  

 The Sick Corporation makes the most widely used laser 
scanner in robotics, the LMS 200 series. It is primarily for indoor 
use and has a 180 degree scan arc at a maximum range of 80m. 
Saarinen’s Personal Navigation System [18] is currently the only 
one in its class that uses the Sick laser scanner. The 5kg (11lbs) 
scanner is mounted on the abdomen of the user through the use of 
a harness. The system uses the laser scanner to simultaneous map 
and localize along with doubled legged pedometry sensors, digital 
compass and a gyroscope. 

Photogrammetric
 Photogrammetry is the analysis of two 2 and 3-dimensional 
spaces from photograms (imaging media such as CCD, radiation 
sensors, and stereo cameras). Photogrammetry is used much like 
laser scanning in localization: to infer distances from landmarks. 
Usually, pictures of landmarks taken with a camera during runtime 
are compared to images of the same landmark taken at previously 
surveyed locations. Fitting algorithms are then used to fi nd the 
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direction and orientation skew between the two images, with which the 
position of the user can be determined by adjusting from the surveyed 
location. 

 There is much research being conducted in this fi eld, but 
current technology is still in the developmental phase. In addition to 
noisy image processing, vision and placement algorithms, limited 
computing resources also force a long response time. It is also very 
diffi cult to infer position in a 3 dimensional world using 2 dimensional 
photograms, so many systems must rely on stereo vision. However, this 
approach also adds more computational and sensing real estate to the 
system, making current photogrammetry setups impractical for use as a 
primary sensor in human navigation systems. 

 Photogrammetric technology is currently being used on the 
Portable Mobile Mapping system designed by Ellum and El-Sheimy 
[9]. The walking measurement system uses high-precision differential 
GPS to characterize the user’s pedometric parameters, after which, 
the system can go for extended periods without a GPS signal. Using 
GPS based pedometry correction is The Portable Mobile Mapping 
system is a both a localization and mapping system that uses GPS and 
a digital magnetic compass for positioning and a digital camera for 
landmark detection and correlation. The PMM is intended for outdoor 
use only, and the photogrammetric system is still in development. The 
designers have admitted to running into serious problems with image 
compression interfering with landmark correlation and how to deal 
with comparing potentially skewed images.
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System Hardware Specifi cation
 The current Human Odometry system is comprised of a 
PocketPC (a HP iPaq or a Dell Axim) and several measurement 
devices: two Inertial Measurement Units (IMUs), a fi ber optic 
gyroscope (FOG), and an optional Bluetooth GPS unit.  The 
PocketPC uses the data from the other devices to detect and 
measure motion and calculate position.  The data from the IMUs 
is used to measure distance traveled, while the data from the fi ber 
optic gyroscope is used to calculate heading.  For the most precise 
position estimates, the GPS data can be used to correct for drift. 
GPS may also be used alone instead of the other devices. 

 All devices are connected via Bluetooth, to form a Personal 
Area Network (PAN).  Each measurement device is connected to a 
Bluetooth transmitter so that the data can be transmitted wirelessly.  
The Bluetooth devices are simple serial to Bluetooth transmitters 
that can be confi gured to output at seven different baud rates.  The 
Bluetooth devices stream the data from their respective devices to 
the PocketPC, which can then interpret the data to be used in the 
application.

 The inertial sensing unit has two major items, a 6-degree of 
freedom IMU and a serial Bluetooth board.  The existing Human 
Odometer units currently use two varieties of the IMU units.  The 
fi rst, the ONAVI FalconGX, has all IMU components on one board.  
The second variety, the ONAVI Gyrocube 3F, contains the inertial 
sensor headers on one board and the digitizer on another. This 
allows for an easier and more compact design.  Both versions of 
the ONAVI IMU output the same exact data - inertial angular rate 
and acceleration - as binary format at 20hz and 9600 baud.  Two 3V 
CR-2 batteries power both the Bluetooth and IMU devices. These 
components are all packaged into a small box which straps around 
the user’s leg.

 The fi ber optic gyroscope currently used is a KVH DSP-3000 
and is wired for digital asynchronous operation.  It outputs an angle 
corresponding to the user’s orientation, at a frequency of 100 Hz. 
The FOG is connected directly to a serial-to-Bluetooth device, 
which outputs data at 50hz and 38400 baud.  The Bluetooth device 
connects to the FOG via serial cable.  To power the FOG, four 
external AA batteries and a 5v DC-DC converter are required. These 
components are packaged into a single heading unit mounted on a 
belt, such that the FOG is positioned on the small of the user’s back.
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 Test Plan
 The purpose of this test plan is to establish a well defi ned 
procedure for quantifying the accuracy of the CMU Human 
Odometer system.  Previously, this system has only been tested in 
an ad-hoc manner, and accuracy has been visually approximated 
by looking at the path drawn on a mapping application. This test 
plan will use a more structured approach to gathering and analyzing 
Human Odometry data. 

 The following tests measure baseline functionality and 
performance, and are not meant to test robustness of the system 
under extreme conditions. That said, baseline performance should 
not be defi ned so narrowly that basic functions of the system are 
ignored. Tests should be conducted with various modes of motion, 
over various types of terrain, to fully test both detection and 
measurement in a variety of conditions. 

 In order to measure accuracy of a localization system, 
a reliable source of position information must be available as 
a benchmark.  The system must be set up and used in a well 
documented and repeatable manner, and all data and results must 
be logged for later analysis or comparison.  A set of statistics which 
quantify the accuracy of the system in meaningful terms should be 
generated from the logged data. The methods which generate these 
statistics must also be well documented and repeatable.  A set of 
steps intended to satisfy these criteria are outlined below.

Procedure
 The following documents the precise set of steps the tester 
must take to gather all necessary information for analysis. Some 
of these steps may be done well ahead of time, while others can 
only be completed on the test site, or shortly before testing.  Any 
deviations from the plan should be noted for consideration in later 
analysis.

A. Preparation Phase

 The Human Odometer consists of a set of wirelessly connected 
hardware components and a software application. These require 
certain confi guration steps to work together, as outlined below.

1. Hardware preparation

• Gather necessary components for the system. The system requires 
two IMU nodes, a gyroscope belt unit, a Bluetooth GPS receiver, 
and appropriate batteries. The belt unit should hold a KVH DSP 
3000 gyroscope, a battery pack, and a Bluetooth node.  When the 
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tester is wearing the hardware, the belt unit should fi t snugly against 
the small of the back.

• Place fresh batteries in the IMUs and the gyroscope. Charge the 
GPS receiver. All baseline tests should be done on full power. If you 
are specifi cally testing the effects of battery power on performance, 
this will require a different set of tests.

• Make any necessary wire connections, such as connecting the gyro 
to a corresponding Bluetooth node and attaching the apparatus to the 
belt.

• Verify the connections by turning on the IMUs and checking that 
the power indicator lights turn on.

2. Course Designation

• Select an appropriate course or set of courses that will allow for 
at least 100m (328 feet) of uninterrupted travel or 3 minutes of 
data. Ideal conditions will include excellent GPS coverage and no 
interfering traffi c which may force the tester to change their course.

• Preferably, the course will have consistent, passable terrain.  At 
least one course should be set up over level ground, to test baseline 
performance of level forward motion. Another course should be 
set up over hilly and/or broken ground to test the tolerance of the 
system to uneven terrain.

• Clearly delineate the path to be traveled through the course. For 
example, the use of fl ags, painted lines or other visual beacons may 
help guide the tester.  The test is not accurate if the tester cannot 
stay on the path.  Beacons should be placed at all turns or hills, and 
should be close enough to each other that the tester can always see 
the next beacons.

• Survey the obstacle course.  Characterize the course numerically 
by measuring distances between landmarks. Landmarks can be the 
visual beacons used to designate the course, or natural features of 
the terrain. Alternatively, a precision GPS reading for landmarks 
may be obtained by standing still for an extended period or using 
a differential GPS device. If the test is indoors, a precise set of 
building blueprints, if available, may be used to measure distances 
between path segments.  However, these must be completely 
accurate, and experience has shown most maps of buildings to be 
somewhat poorly proportioned. 

3. Software Preparation

• Obtain the latest software from the revision control system. Note 
the date of checkout, and tag the fi les you are testing for future 
reference.

• The software needs to know which device you are using.  
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All devices are connected to the PocketPC via Bluetooth 
communications. In the future, device connections will be set 
in an XML fi le, but currently all connections are hard coded. 
Therefore, the Bluetooth addresses for the nodes that will be used 
must be included in the code. The correct Bluetooth address can be 
determined by the labels on the nodes.  Be sure to note which IMU 
node the software will expect on the tester’s right leg, and which on 
the tester’s left leg.

• If you wish to run the map tracking software while collecting data, 
make sure the initial position given to the Human Odometer is set 
as the fi rst point in your surveyed path. Also make note of the initial 
heading expected by the software.

• Compile the software for data logging mode to log GPS, IMU and 
Gyro data. Make sure the localization system is set up to look for all 
of these devices, since many tests of the system do not include GPS.

• Load the software onto a PocketPC. Currently supported platforms 
are the HP iPaq 5555 and Dell Axim.

4. System verifi cation

Perform a basic test of the software build in order to ensure that 
compilation settings were correct and all devices are connecting 
properly.  Suffi cient verifi cation should include the following: 

• Wearing the measurement devices, run the application and walk 
around normally, to verify that a path is drawn on the application’s 
maps.

• After running the application, check the device log fi les to ensure 
that all devices are receiving reasonable data at expected rates.  IMU 
logs should have data rates of about 20 Hz, gyro logs tend to have 
rates of 60 to 100 Hz. IMU logs should not contain zeros. Gyro logs 
should show an initial output of angular rate, followed after a few 
samples by an output of integrated angle data only.

B. Testing Phase

1. Wearing the System

The Human Odometer’s measurement units are very sensitive to 
location. In order for measurements to be accurately scaled, each 
wearer must use a consistent placement of the hardware every time 
they use the system. 

• Strap the two IMUs to each leg, ensuring proper tightness such 
that they are rigid against the leg axis to prevent jostling. The best 
place to wear the IMUs is directly below the knee. They should 
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be on outside of the leg, with the power switch facing forwards. 
They must be aligned with the direction of motion. In other words, 
when looking straight down at the IMUs they should not appear to 
be tilted inwards or outwards; the cover of the boxes should face 
directly outwards.

• Put on the belt, ensuring that the gyroscope assembly is snug 
against the small of the back. The gyroscope itself should be 
perfectly horizontal, or heading data will quickly accumulate error.

• The GPS device needs to be placed wherever it will get the best 
coverage. It is recommended that the GPS device is affi xed to the 
top of a hat with Velcro.  

2. Starting Up

• The tester must be at the fi rst surveyed point in the planned course 
before starting the application.

• The tester should be facing in the direction expected by the 
software, noted in the Software Preparation step. A compass is 
helpful.

• Turn on the PocketPC.

• Start the application.

• Switch on power to the IMUs, gyroscope and GPS receiver. 
It is recommended that these are switched on in the order they 
are searched for by the application. Therefore, turn on fi rst the 
gyroscope, then the IMUs, then the GPS. After turning on each 
device, wait for the application to connect to it before turning on the 
next device. The application should print “Device Matched” to the 
log screen when it has completed a connection.

• Wait for the GPS device to get a lock. When it has received enough 
satellite data to get a good lock, the current position indicated on the 
map will stabilize.

3. Course Completion

• Walk or run the obstacle course by visiting the predetermined path, 
allowing for as little deviation as possible.

• Shut down the application.

• Turn off power to the devices (IMU, Gyro, GPS etc).

• Save the log fi les generated for the trial.

• Record any observations and errata for the trial. Important things 
to note are signifi cant deviations from the path and any system 
anomalies. 

• Check for appropriate battery power and replace if necessary.
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• Repeat the obstacle course trial with various speeds and user 
modes (i.e. walking, running, jogging etc). 
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