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Abstract 

 

Planetary environments are among the most hazardous, remote and uncharted in 

the solar system. They are also critical to the search for life, human exploration, 

resource extraction, infrastructure and science. These applications represent the 

prime unexploited opportunity for automated modeling, but robots are under-

utilized for this purpose. There is urgent need to explore, document, and evaluate 

these spaces with robots and to do so in a superior and efficient manner beyond 

the state-of-the-art.  

This thesis introduces Lumenhancement: the use of active illumination and 

intensity imaging with optical domain knowledge to enhance geometric modeling. 

While planetary environments are among the most challenging for robots, they 

share unique appearance constraints that can be exploited for sensing. Their dark, 

uniform, rocky and physically constrained nature enables a variety of physics-

based vision techniques which are not pertinent in other field environments. 

Synergistic integration of calibrated imagery with traditional range sensing results 

in models with increased accuracy, sample density and readability. By leveraging 

the prevalence of existing illumination – such as sunlight – and common imaging 

sensors along with post-processing capability, this work promises broad 

significance. 

Contributions from this thesis extend the state-of-the-art in several ways. Future 

discussion is anchored by experimental characterization of the planetary domain 

for the material and geometric properties of appearance. Material reflectance 

characterization using gonioreflectometry has created the first empirical BRDF 

database of planetary materials. Studies of surface geometry have resulted in the 

first expansive database of range sensor comparative performance. The 

correctness of common vision assumptions in this domain, implications to intensity 

image techniques, and relevance to other domains are addressed. Novel methods 

for range and image fusion are devised to enhance and optimize aspects of model 

quality in the context of these principles, including geometric super-resolution, 

image-directed optimal sampling, and material classification. New possibilities for 

visualizing lumenhanced models are also presented. Finally, implementations on 

mobile mapping robots and field experimentation at a coal mine and moon-yard 

are documented.  
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Glossary of Terms 

albedo – A ratio of reflected light to incident light that is an intrinsic property of materials. 

appearance – Light interaction with a scene that can be captured with imaging sensors.  

brdf – The Bi-directional Reflectance Distribution Function, which encodes reflection of light from 

surfaces. The BRDF is the principal unique property of materials in computer vision. 

color – Spectral variation of albedo across wavelengths of light. In graphics, it is a vector of tristimulus 

(RGB) values when used in context with an observer and known spectral response functions.    

diffuse – Scattering radiation equally in all viewing directions. 

emergence – Outgoing light ray from a surface.  

incidence – Incoming light ray to a surface. 

inversion – Use of the BRDF and radiance observations to recover the intrinsic properties of a body, i.e. 

parameter fitting.  

isotropic – (1) Radiating equally in all directions. (2) Rotationally invariant in the context of BRDFs. 

Opposite of anisotropic.  

model – A three dimensional, geo-registered map of the environment. Data is not limited to just 

geometry. 

macroscopic – Robot or human scale; macroscopic features are differentiable with current surface 

sensing technologies.  

microfacet – Approximation of flat surfaces as patches consisting of flat microscopic cavities. 

radiance – Light leaving a surface. Opposite of irradiance.  

perceptual – Relating to sensed phenomena as opposed to physical.   

specular – Glossy; A surface with a peak radiance in a viewing direction at opposition to the light source, 

resulting in “highlights”.  

variegation – consisting of many discrete materials or colors, “splotchy”. 

 

  





Chapter 1:  
 

Introduction to 
Lumenhancement 

 

Robotic mapmaking is destined to impact the safety, economy and science of operations on earth and 

other worlds. Maps are geospatial representations of geometric, physical and visual information. Robots 

use maps to document, reason, and interact with the world; and maps are created as a byproduct of 

these actions. Unlike the two dimensional maps of yesteryear and the 2.5D occupancy grids of today, 

the future demands dense three dimensional  geometry geo-registered with multi-spectral and multi-

sensor information. These are not maps in the traditional sense, but comprehensive models: they 

provide environmental understanding beyond simply geometry.  
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Only robots are able to generate models with superb level of detail and quality, and to do so in 

hazardous environments that humans cannot visit. In fact, modeling is the primary motivation and 

purpose for robots tasked with planetary exploration, survey and inspection. Such applications 

represent the prime unexploited opportunity for robotic mappers; their prevalence throughout the 

universe is astounding. However, planetary environments are also distinguished by critical constraints 

on power, mass, surface reflectivity, and ambient illumination available for sensing. Improvements in 

modeling efficiency and quality will represent significant opportunity for robotic technology in this 

domain.  

Lumenhancement, a concept introduced in this thesis, can be utilized in the modeling process to achieve 

these objectives. Lumenhancement is simultaneously an approach and a philosophy. It is an exploitation 

of optical domain knowledge with targeted illumination and also a data-centric view in the use of robots 

as modeling tools. These two concepts are inextricably linked by the laws of image formation as they 

govern the appearance of environments. As a result of this physical grounding, Lumenhancement is both 

effective and broadly applicable as experimentally demonstrated herein.  

1.1 The Case for Planetary Environments 

This thesis targets modeling in the planetary domain. In this context, planetary encompasses both 

barren cosmic landscapes and terrestrial underground voids. Quantitative evidence is presented in this 

document as to why these seemingly disparate environments are interchangeable and equivalent. 

Moreover, this determination will have unique ramifications in the approach to modeling. However, at 

this point it is sufficient to simply convey intuition that these environments are optically congruent in 

addition to being similarly remote, hazardous, and map relevant. Furthermore, this duality will present 

an interesting breadth of applications to demonstrate efficacy where possibility for experimentation 

may be limited - sending a robot to the moon for example.   
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Figure 1. Robotic Modeling in Planetary Environments. Examples include (1) automated lunar landing, (2) terrestrial  

underground inspection, (3) lunar resource extraction, (4) mapping of “skylights”, (5) exploration of abandoned mines . 
[Photo courtesy Red Whittaker, CMU for (1); David Wettergreen, CMU for (2); all others Uland Wong].  

 
Planetary environments are among the most hazardous, remote and unexplored in the solar system. 

Yet, they are also among the most likely candidates for harboring extraterrestrial life  [Thompson 2008], 

finding volatiles [Wettergreen, et al. 2009], and providing warmth and radiation shielding for human 

explorers [De Angelis, et al 2002]. On earth, the underground presents tremendous material and 

scientific value as well as ecological danger and security risk [Morris 2007], [Omohundro 2007]. There is 

urgent need to explore, document, and evaluate planetary spaces with robots and to do so in a superior 

and economic manner beyond the state-of-the-art.  

Much of prior work has focused in adapting general surface sensing techniques to extreme 

environments. Very little research has been undertaken to address the effectiveness of these methods 

in the domain and fewer still have addressed notions of optimality or optimization of sensing resources. 

These issues are particularly important because many of these environments where robots are prime 

candidates for mapping are also those that are acutely difficult for sensing and robot operation. Many 

planetary bodies, like the Moon, asteroids, and Mercury exist in the extremes of illumination. 

Particulates in submerged or dusty atmospheric environments scatter light sources and confound both 
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image-based and time-of-flight measurement techniques. Lastly, lack of bandwidth, power and mission 

lifetimes, limit the type and quality of sensing available.  

Fortunately, planetary environments are not without advantages which can be leveraged to maximize 

modeling productivity. Uniform, barren, rocky surfaces are known to be uniquely suited for use in 

image-based perception methods. While natural illumination fluctuates between the harsh limits of 

absolute dark and unadulterated intensity, it is in fact physically simple and mathematically factorable 

for many uses. Physical constraints on the distributions of both the macroscopic and surface geometry 

lend themselves to characterization and utilization in prediction of performance. The close relationship 

between planetary spaces to many outdoor domains could ensure wide applicability to robotic mapping 

in general. These reasons, among others are compelling motivation for the research and development of 

planetary-specific sensing.  

This thesis seeks to answer the question: 

 

How can the appearance of planetary environments be exploited to improve 

geometric modeling in a general manner? 

Research Question  

 
Specifically, this thesis uses exploited to mean “in the sensing process” – independent of autonomy or 

robot function and utilized in a strap-down manner. Generality is a consideration of broad applicability 

for geometric modeling and the expected favorable performance of these techniques in many related 

environments as opposed to single mission use.    

1.2 Shortfalls in Planetary Modeling 

Planetary applications have produced several notable victories for orbital mapping. The Mars Global 

Surveyor has generated complete altimetry on a planet-wide scale [Albee, et al. 2001]. The moon has 

been mapped with a combination of imagery and altimetry from the Lunar Reconnaissance Orbiter 

[Smith, et al. 2010] and half-century old Apollo data using modern long-baseline stereo techniques 

[Edwards, et al. 2006]. Orbital probes have also visited Mercury [Hawkins, et al. 2007] and asteroids like 

433 Eros [Zuber, et al. 2000]. The work of Kirk in generating high resolution topography of Mars using 
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HiRISE [Kirk, et al. 2007] and establishing the lunar control network [Archinal, et al. 2006] is a major step 

toward earth-like mapping of planets. However, these approaches are limited by comparatively low 

resolution, single-perspective1, and remote observation which are unsuited to human-scale activities.   

The only significant examples of robotic planetary modelers are the Mars Exploration Rovers, which 

mapped traces of the red planet in high detail over long duration using stereo vision and 

photogrammetry [Goldberg, et al 2002], [Cheng, et al, 2006]. Here on earth, robots are not yet socially 

and economically accepted for subsurface use even in the most dangerous of applications. However, 

inroads for modeling have been created through the pioneering research of [Champeny-Bares, et al. 

1991], [Omohundro 2007], [Morris 2007] for mining and [Johnson, et al. 1996], [Yoerger, et al. 1999], 

[Fairfield, et al. 2005] for underwater application.  

While there is no doubt more missions will target these planetary spaces for years to come, the current 

state of robotic planetary modeling stands in stark contrast to the proliferation of terrestrial surface and 

indoor mapping. Robotic modeling technology is omnipresent in safe driving applications like the DARPA 

Grand Challenges [Thrun, et al. 2006], [Urmson, et al. 2007]; large-scale human demography like Google 

Street-view [Anguelov, et al. 2010] and Google Earth [Kennedy 2009]; building survey [Oliver, et al 

2011]; indoor [Tardos, et al. 2002] and social robotics [Izadi, et al. 2011]; and even micro-aerial 

inspection [Chambers, et al. 2011]. These maps are expansive, highly accurate, and easily updated 

because their creation represents simple sensor application in highly structured environments. Copious 

computing, power and sensing resources are easily brought to bear, without regard for efficiency.  

This approach cannot succeed in many field environments – let alone planetary - where impediments to 

sensing are ubiquitous. Environments which are fundamentally different optically, geometrically and 

physically, demand fundamentally different approaches. Amazingly, terrestrial surface sensing 

techniques and commercial sensors tailored to industrial application are commonplace for planetary 

operations. The truth is that techniques for optical sensing - the primary means of model making - have 

lagged behind the other capabilities of robots in this domain. Terrestrial approaches might work or even 

suffice for many applications, but they are generally doomed to ineffectiveness.  

The costs of model acquisition are drastically disproportionate to the sum of knowledge gained. This 

knowledge gap is the result of unprincipled measurement, inflexible sensors and poor visualization 

compounded by the difficulties of the domain. Robot maps vary widely in effectiveness according to 

                                                                 
1
 Orbital approaches are 2.5D and grid based 



 
 

24 
 

application: volumetric estimation depends on terrain structure and sensor viewpoint; measurement 

scale significantly affects feature identification; and virtually no attempts have been made to improve 

human readability of models beyond raw point displays or meshing. These considerations, among 

others, have particularly contributed to the slow adoption of robotic mapping technology underground, 

for example. Technologies which improve the real and perceived effectiveness of robot mapping will 

reduce the stigma of “expensive toys” and potentially save lives in the process.    

1.3 Document Overview 

This thesis introduces the idea of Lumenhancement to the sensing literature . The document comprises 

seven chapters: (1) Introduction, (2) An Optical Interpretation of Modeling, (3) Thesis Statement, (4) 

Related Work, (5) A Characterization of Planetary Appearance, (6) Case Studies for Lumenhancement 

and (7) Conclusion. The introduction – this section – describes the technical gap in planetary modeling 

and motivations for using Lumenhancement to improve robotic sensing in the domain. Chapter two 

reviews image formation fundamentals and establishes the concept of appearance spaces, which are a 

vehicle for analyzing the applicability of vision techniques. Chapter three is the thesis statement which 

defines Lumenhancement and introduces the three topical areas that are foundational to the thesis: 

domain knowledge, optical sensor fusion and active illumination. Chapter four describes related work in 

each of the topical areas, explains foundational concepts, and contrasts this thesis with prior work. 

Chapter five documents the experimental characterization of the planetary domain for the parameters 

of appearance using gonioreflectometry and range sensor survey. Case studies, chapter six, presents 

three example methods for improving modeling with Lumenhancement and provides experimental 

evidence for the efficacy of these techniques. Lastly, the conclusion covers the contributions of the 

thesis and its significance to planetary modeling.      



Chapter 2:  
 

Foundations of Appearance  
in Modeling 

 
 

“There is the motion, the actual wave and radiation of the 

darted beam; not the dull universal daylight, which falls on the 

landscape without life, or direction, or speculation, equal on all 

things and dead on all things; but the breathing, animated, 

exulting light, which feels, and receives, and rejoices, and acts; 

which chooses one thing and rejects another; which seeks, and 

finds and loses again, leaping from rock to rock, from leaf to leaf, 

from wave to wave, glowing, or flashing or scintillating, 

according to what it strikes.”  

 

John Ruskin, Modern Painters, 1843 

on the nature of chiaroscuro - the use of contrasting light to 
emphasize geometry in painting  
 

 

2.1 Optical Sensing in Modeling 

The classical masters of the Renaissance and Baroque knew the power of controlled lighting in defining 

boundaries, conveying volume, and elucidating features. Despite the incredible complexity of physical 

light interaction and projection from three dimensions onto a two dimensional image plane, the 
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information – and emotional – content of chiaroscuro2 paintings could not be more clear. Similarly, a 

light detector provides the ability to surmise shape, substance, and spatial information from a distance, 

at high information density, and without alteration of the scene. It is not a surprise then, that robot 

modeling of this generation3 is almost exclusively optical. In fact, this is also true in the vast majority of 

robotic exteroception.   

The dominant population of optical sensors can be classified into two types: range sensors and image 

sensors. Almost any number and combination of these classes can be found on modeling robots - Figure 

3 illustrates some optical configuration examples. Range sensors like LIDAR, RADAR and Structured Light 

measure distance to objects, most often by generating and measuring controlled illumination (see 

background section for an in-depth review). This distance reading is coupled with the known pose of the 

sensor to produce a single point sample in three dimensions. While their mode of operation is often 

beam based and areal, samples are usually treated as infinitesimal Dirac “points”. With enough samples, 

a representation of the scene surface geometry emerges either through connective (i.e. meshes) or 

volumetric (i.e. clouds, voxels) means. Range sensors are the primary means of robotic mapmaking 

because they measure geometry directly and at the heart of maps are a collection of geometric 

relationships between objects.  

 

                                                                 
2
 Chiaroscuro, meaning “light and dark” in Italian, is a form of painting which emphasizes contrasting illumination 

for dramatic value. 
3
 Acoustic sensors have only remained relevant in underwater modeling and hobbyist robotics. Tactile sensing is 

invasive and irrelevant for rapid modeling in most field environments.  
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Figure 2. Canonical Optical Sensors. Cameras measure a composition of material, geometry, and illumination using the 

mechanism of two dimensional image projection (top). Only angle and intensity information for each light ray is preserved. 
Range sensors directly measure geometry to produce “clouds” of point samples in three dimensions (bottom). Data is from a 
sandstone cave.    

 
Cameras, which are image sensors, capture the appearance of a scene as a two dimensional projection 

of light intensity. This appearance is a composition of light phenomena, geometry, material and color 

spectra. Traditional cameras are passive sensors in that they measure only light reflected off the scene 

and have no indication of the original timing, frequency, or intensity. Such environmental illumination 

can be from the sun, another natural source or an artificial source. Light used in this manner provides 

the possibility of confusion; its effectiveness as a sensory medium is based on consis tent probabilistic 

correctness. Ruskin’s observation of the ineffectiveness of general daylight as compared to more 

discriminating directional illumination summarizes one facet of this problem. As the compositional and 

projective processes of image formation are lossy in nature, extraction of meaningful information 

requires the use of assumptions and the validity of these assumptions [Horaud, et al. 1988] 4. 

Despite these drawbacks, cameras are the only commodity5 sensor capable of detecting material or 

color – even if these properties cannot be unambiguously discriminated from an image . Camera data 

closely matches the human visual experience. The measurement density and throughput of cameras is 

also far superior to range sensing as a result of prevailing physical designs. Images are often used in 

                                                                 
4
 The reader is encouraged to consult a sensor physics reference like [Fraden, 2003], for more detailed explanation 

of camera and range sensor theories of operation. 
5
 Many types of spectrometers exist for detecting material properties. While highly accurate in classification, these 

are not conducive to mobile 3D mapping due to low measurement density and invasive sampling.   
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detailed understanding of the scene for these reasons. However, any geometric information gleaned 

from images would greatly supplement the low density, slow acquisition of range sensing.      

This work blurs the distinction between range sensors and cameras by exploring beyond the traditional 

uses of images in mapping. In particular, superior recovery of geometric and appearance information is 

demonstrated from images taken under controlled illumination and constrained appearance properties.  

 

 

Figure 3. Modeling Robots and Their Sensors. Some examples of field robots utilizing LIDAR ranging (yellow arrows) and 
cameras (green arrow) in varying configurations. (1) Cavecrawler, a mobile mine inspection robot; (2) Ferret, a snake -like 
borehole inspection robot; (3) Scarab, a lunar prospecting robot [photo courtesy David Wettergreen, CMU]; (4) an 
automated lunar lander concept; (5) Depth-X, an underwater explorer that utilizes sonar and a camera [photo courtesy David 

Wettergreen, CMU]; (6) H1ghlander, an off-road racing robot [photo courtesy Red Whittaker, CMU].     

2.2 Domains as Appearance Spaces 

A colloquial definition of the word domain has thus far been used in this thesis and prior work to denote 

a province of robotics. In this sense, domains are collections of exemplary environments, associated by 

their similarity of application. An “indoor” domain, for example, may comprise homes, office spaces, and 

restaurants, where an intersection of applications includes housekeeping and people interaction. This 

thesis augments prior definitions with a novel consideration of environments which are similar in 

appearance. These optical domains are central to reasoning about planetary sensing approaches and 

their limits of applicability.    
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The groundbreaking work of [Omohundro 2007] and [Morris, et al. 2006; 2007], were some of first to 

define domains in field robotics and to utilize their properties in development of robots. Their work 

serves as specific inspiration for this thesis, as they first described a subterranean domain, made 

compelling arguments for traveling underground and initiated a campaign for autonomous underground 

mapping. Omohundro, in particular, was the first to attempt formal characterization of underground 

spaces beyond qualitative arguments. In his thesis, he explores a spectrum of range sensing methods 

and classifies underground voids by immersive material: water, air, collapsed or solid. Internal roboti c 

exploration and modeling is distinctively identified as a more effective alternative to remote surface 

sensing methods like ground penetrating radar (GPR). Based on these observations, a mechanical 

configuration taxonomy sorted by ingress method and portal size is proposed for robots designed to 

map the domain. The term “subterranean domain” is coined and implied to mean terrestrial mines, 

tunnels and caves, with example implementations primarily targeting application in abandoned mines.  

 

 

Figure 4. Surface Appearance Model. Incoming light rays, parameterized by polar angles, strike the object surface. These rays 
are decomposed and reflected in many directions determined by the material properties. Some of the outgoing rays will 
reach the sensor location indicated by the viewing direction.  

 
Though the primary motivation of Omohundro’s work is sensing of air-filled underground voids, the 

assessment and characterization of environments presented lacks a sensing context. When the 

geometric nature of mines (including ingress type) is considered along with the material and 

atmospheric characteristics, a more general but nuanced picture of the subterranean domain is 

revealed. Many mapping methodologies that apply to abandoned mines and caves also apply to a 

plethora of other environments, both on earth and other worlds. Yet, between two dry mines on earth 

the same LIDAR range finder may work well in a limestone mine, but fail to return readings in a coal 

mine where anthracite coal exhibits strong absorption of near-infrared signals for example.            
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Optical sensors like LIDAR and cameras are central to robotic mapping in almost every environment. As 

such, the parameters of appearance provide a much better basis for understanding and describing 

domains, particularly, when the focus is mapping. Geometric optics - rules that approximate light 

propagation - governs surface appearance through the principles of reflection and refraction. In the 

classic appearance model (Figure 4), light is radiated from an illumination source along geometric rays. 

These light rays intersect scene points where they may be partially absorbed and reflected in many 

directions (scattering).  The mechanism of reflection is a complex function of the macroscopic geometry 

as described by a surface normal and the optical properties of the material which define the intensity 

and distribution of scattered light. Light from the scene may further reflect multiple times before 

passing through a lens, where the rays are warped through refraction and are finally captured by a 

sensor [Horn 1986]. This simple geometric model does not have the expressive power to describe 

phenomena such as diffraction or participatory media, though the former is rarely a major issue in 

imaging and latter can often be approximated with greater light source complexity in scenes where 

sensing distance is comparatively short6. For the express purpose of describing application domains, 

however, the aforementioned approximation suffices.  

Some of these parameters can be manipulated or controlled in the design of an optical perception 

system, but others must be accepted as immutable. It is evident that natural illumination and the 

parameters of reflection, scene geometry and material, are functions of the environment, while 

refraction (lensing) and detection are properties of sensor construction.  This dichotomy forms the basis 

for defining optical domains in this thesis; environments in the traditional sense are described by the 

circumstances of their appearance - parameterized by geometry, materials, natural illumination and 

participatory media. Domains are not just collections of characteristic environments, but a continuous 

“appearance space” spanned by these constituents. 

 

                                                                 
6
 Daylight illumination is often approximated as a combination of directional lighting from the sun and ambient 

blue light from the sky for the purposes of vision and rendering. The effect of atmospheric Rayleigh scattering is 
minimal at robot sensing distances; however larger particles such as dust or smoke in the Mie domai n can be 

detrimental to sensing. 
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Figure 5. Parameters of Image Formation can be divided into two classes: those intrinsic to the application environment 
(material properties, surface geometry and natural illumination) and those which are byproduct of sensor design.  

 
In this framework, environments are only differentiable with respect to their optical effects  in image 

formation. Conversely, environments with optical similarity within the tolerance of the sensing 

resolution or their respective natural variations are indistinguishable. This judgment is regardless of 

traditional factors such as geographic location or ingress constraint because those are not detected by 

sensing. This classification creates a convenient way of analyzing the generality of sensing techniques as 

the applicability to environments directly corresponds to the space of optical phenomena spanned.   

Consider a graphical representation of the appearance space, where three arbitrary orthogonal axes 

represent complexity of geometry (x-axis), material (y-axis), and natural illumination (z-axis). Increasing 

distance from the origin denotes increasing complexity of each attribute. The natural illumination axis 

describes the potential of sunlight (or derivatives like airlight) to interfere with sensors. Simple 

illumination environments include those where the sun can be modeled as a point source, or where no 

natural light exists (i.e. caves), while complex environments exhibit multiple scattering and atmospheric 

effects (i.e. terrestrial outdoor daylight scenes). The material axis describes the quantity of materials – 

and consequently reflectance functions – that occur with significant frequency in the environment. 

Modern coal mines, with metallic roof beams, nylon curtains and mine equipment are material-complex, 

while asteroids, generally mono-material and covered in regolith, are simple. Lastly, geometry axis 

measures both the minutia of surface features as well as the quantity of concavities and convexities 

encountered in the structure. Underwater voids are quite geometrically complex due to formation from 

flowing liquid, while lava tubes, are not much more than smooth, lazily wandering cylinders.   
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Figure 6. Mondrian Environments describe the simplest conditions of image formation which are matte materials, ambient 
illumination and planar surfaces.  

 
The simplest conditions of image formation – matte materials, ambient illumination, and planar 

geometric surfaces – meet at the origin of the appearance space. These conditions are exemplified by 

Mondrian environments [Blake 1985], named for the Dutch Neoplastic artist Piet Mondrian, who 

painted only black-lined grids with variably positioned red, yellow and blue rectangles. While Mondrian 

environments are an idealization, they are not unlike indoor spaces which are frequent targets of 

camera-based sensing. These minimalist approaches are often successful as a result of this 

environmental simplicity.  

 



 
 

33 
 

 

Figure 7. The Planetary Domain and Related Environments. The axes denote increasing quantity and complexity of materials; 
geometry, which includes macro-scale features and minute surface detail; and illumination – number and complexity of 
natural light sources. The origin represents a perfect Mondrian environment. Other environments shown include: (1) Lunar 
and terrestrial lava tubes, (2) underground mines, (3) Lunar craters, (4) asteroids, (5) the Martian surface, (6) the sea floor 
and underwater caves. Work presented in this thesis applies to (1-4 in red), while the subterranean domain of Omohundro 

and Morris is illustrated with the red oval.              

 
The subterranean domain of Omohundro might occupy a region near the origin of the illumination and 

geometry axes, while being moderately elevated in the material axis (z). Figure 7 shows subterranean 

environments as an abstract red oval in the appearance space along with photographs of some 

characteristic environments. A lava tube and a coal mine (shown) are two examples that fall under the 

original strict definition of this domain. However, it is quickly apparent that some “surface” 

environments on asteroids or the moon and partial voids such as lunar craters or skylights7 are at least 

as optically similar to both these examples as the examples are to each other. In contrast, other 

terrestrial underground environments like flooded caves are less similar in appearance.  

                                                                 
7
 Lunar Skylights are recently discovered features thought to be openings to lava tubes and formed through 

surface collapse [Haruyama, et al. 2009]. It is believed the openings at the top of the void are much smaller in 
diameter than the void itself, presenting an interesting “skylight” i llumination scenario. It is unknown whether the 

rest of the lava tube is accessible from these locations.       



 
 

34 
 

This thesis defines the planetary domain to be the set of barren, dry, rocky environments with simple 

natural illumination. These qualifiers and their significance to appearance are now discussed: 

Barren. Planetary environments have a few dominant surface materials which can be 

approximated as smooth and locally planar. These materials are spatially clustered and 

discriminable using vision techniques. Complex man-made artifacts and materials are virtually 

nonexistent. This property means the environment is conducive to measurement and that 

reasonable inferences can be made about data which is interpolated between sensor readings or 

within the integrating cone of a single reading. Assumptions that small changes in perceived 

intensity are the result of shading while abrupt changes are due to material or object boundaries 

are valid.   

Dry. There is no participatory media, like dust or smoke, in the environment which can 

appreciably absorb or scatter illumination between the scene and sensor. This requirement is 

relative to robot sensing distance and scale. Air-filled voids are only minimally different from 

vacuums for most sensing purposes, but water or smoke filled voids are not. This property 

ensures that illumination used or carried by the robot reaches the scene with the same 

distribution that it was generated so that this information can be utilized for vision. Furthermore, 

the signal from the scene is not unduly corrupted by the participatory media. 

Rocky. Surface materials are mostly diffuse such that robots are not required to reason about 

complex phenomena like translucency, mirror specularity and light emission. Variegation due to 

mineralogy or aggregation is macroscopically approximable as a single albedo or color. This 

constraint enforces strong correlation between image features and shape and enables simple 

geometric recovery given image data. Moreover, diffuse reflection ensures that scene features 

remain highly correlated between similar, but different viewpoints.       

Simple Illumination. Natural illumination can be approximated as a linear combination of point 

sources of known location or is absolutely dark such that an artificial source of these properties 

may be carried by the robot. Any ambient or stray light in the scene must either be sufficiently 

minimal or removable; this may summarize the “void” attribute of Omohundro and its benefit to 

sensing8. The view of this thesis is that illumination may be environmental, but is not an explicit 

                                                                 
8
 Bounded, concave voids result in a constant ambient illumination from interr eflection when the void is small, or 

negligible interreflection when large.  
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property of scenes where modeling is concerned. Thus, it is one of the few factors that can be 

utilized to control image formation such that these properties can be discriminated. Simple 

Illumination might also be called “dark” for a less precise, but helpful single-word mnemonic 

qualifier. 

This domain encapsulates the original planetary applications of interest and many of the underground 

environments considered by Omohundro with terminology that is context neutral in regard physical 

location or configuration. While this redefinition may seem like an exercise in semantics, it is critical to 

conveying that optical sensing techniques may have significance beyond their original application intent. 

In particular, this work rejects that traditional “void sensing” techniques must only be limited to classes 

of enclosed environments like a mine. Instead, it is more important that geometry (like material and 

illumination) is consistent and characterizable. Indeed, skylights and craters are only trivially different 

from voids, as all three are macroscopically flat.  

With these criteria, it is possible to observe an intra-class variance in the planetary domain and also a 

continuum of similarities between it and related environments. The boundaries of this domain are 

approximate and ultimately insignificant; in quantitative analysis, a distance measure is arguably more 

useful than arbitrary thresholds. Example subterranean environments include coal mines, lava tubes, 

lunar craters, lunar skylights, and asteroid surfaces. Near neighbors include the Martian surface with 

more complex, atmosphere-scattered solar illumination and flooded voids with no natural illumination, 

but strong participatory media and non-planar geometry. Planetary modeling strategies may pertain to 

these neighbors with some modifications or decreased effectiveness.  Table 1 below summarizes several 

characteristic environments as well as the neighbors shown in Figure 7. These determinations are not 

rigid and are intended only to serve as an informative guide. For example, some polar explorer concepts 

on the moon circumnavigate at latitude to produce maximum solar energy [Wettergreen, et al. 2005]. 

Such a robot would always shadow the terrain in front of it, and would be operationally identical to 

actively illuminated crater explorers.       
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Table 1. Summary of Characteristic Environments and Neighbors. Environments  di rectly applicable to this thesis are in 
highlighted in blue. Al though the underwater realm and Martian surface are distinct from the other environments, approaches 
addressed here are possibly applicable.  

Environment Materials  Geometry  Natural Illumination 

Coal mine 
Moderate, a few dominant, 

covered in dust  
Moderate, predictable None 

Terrestrial cave Moderate, mostly diffuse Moderate, bounded  None 

Lava tube Few 
Simple, smooth and 

straight 
None 

Lunar crater Few, regolith and bedrock Moderate, planar 
Simple, starfield and sun, 

some permanently shadowed 

Lunar skylight  Believed to be few 
Moderate-Complex, 

tunnel-like 

Simple, bounded s tarfield and 

sun, may be shadowed 

Martian surface 
Moderate, dust and 

dominant rock types 
Moderate, planar  

Moderate to complex, 

depends  on exis tence of 

atmosphere/weather 

Underwater Possibly many Complex, planar 

Complex, immersed 

scattering media , no natural 

light at depth 

 

2.3 The Role of Domains  

Assumptions are crucial elements in simplifying robotics perception problems. Line-based features, 

which are uncommon in the natural world, are omnipresent in indoor feature tracking applications. In 

effect, there is an (often true) belief that only geometric changes result in a change of intensity.  Many 

surface robots represent the world as 2.5D grids because they likely do not leave the ground plane. 

Stereo vision approaches assume changes in viewpoint from parallax do not change incident 

illumination. Perception cannot occur without requiring some set of assumptions to be mostly valid 

during the majority of the application lifetime. 

While planetary environments are filled with challenges, assumptions can also be made to e nhance 

sensing.  However, the set of suitable assumptions is fundamentally different from that made in indoor 

or surface environments. The domain classification exercise provides a vehicle for constructing 

assumptions and analyzing their validity. An understanding of optical properties can be exploited to 
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enhance perception with targeted sensing. Consider a numerical formulation of the geometric optics 

given by Horn in section 2.2, Figure 4. The radiance  ,o oL x w  at position ( x ), with incoming and 

outgoing vectors ( ,i ow w ), and surface normal ( n̂ ) is given by the Rendering Equation [Kajiya 1986]: 

  

(2.1) 

The Rendering Equation describes light transport for geometric optics . 

 

where,  , ,o if x w w is the material reflection function,  ,i iL x w is the illumination distribution, and 

 ˆiw n is the projected irradiance onto the surface.  ,e oL x w  is the light emitted from the scene (i.e. 

the scene is a light source), which is not further considered in this work. It would be beneficial if this 

equation could be reduced to a simpler form, such as a triple product: 

 E M I G    (2.2) 

where E is the radiance as perceived by a sensor,  , ,o iM f x w w is the material,  ,i iI L x w  is 

the illumination and  ˆiG w n  is the geometry. Marginalization can occur with knowledge of any 

factors to enable probabilistic estimation of unknowns. With sufficient knowledge, certain critical 

constraints, or multiple observations, even unambiguous recovery is possible. Noiseless decomposition 

of individual terms is not likely, however, as assumptions and constraints are themselves subject to 

error.  

This form of qualitative reasoning can be applied to planetary environments to recover geometry given 

the aforementioned assumptions of barren, dry, rocky, and simple illumination, for example. Consider 

the rendering equation (2.1) once more. Applying assumption of simple illumination (external, point 

sources and direct illumination), the equation becomes9:    

         , , , , ,
ˆ( ) , , , , ,o o e o o k i k i k i k i kk

E x L x w L x w f x w w L x w w n     (2.3) 

                                                                 
9
 This Interreflection of light within the scene is assumed to be negligible compared to the direct component.   
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A hemispherical integral is no longer required. Instead, the contribution of a discrete number of k

infinitesimal point sources can be counted and summed linearly. Moreover, light from the scene is 

either emitted to the infinite void or reaches the camera directly such that  ,o oL x w  is equivalent to

( )E x  - the intensity image of perceived radiance in the corresponding set of pixel directions
ow . The 

rocky surfaces are also assumed to be non-emitting, meaning that only directly reflected light from a 

source not in the scene reaches the sensor, giving: 

      , , , , ,
ˆ( ) , , ,o k i k i k i k i kk

E x f x w w L x w w n   (2.4) 

Rocky surfaces are also assumed to be diffuse. Thus the reflectance function is replaced with a constant 

term  



, which does not change between any incoming or outgoing angles. The significance of this 

scalar Lambertian albedo and its normalizer is described in later chapters.  

   , , ,
ˆ( ) ,i k i k i kk

E x L x w w n



   (2.5) 

Next, planetary environments are assumed be dry. There is no participatory media which can affect the 

angular distribution or intensity of light reaching the scene. Thus, the light source function can simply be 

replaced with the scalar intensity of each point source: 

  ,
ˆ( ) k i kk

E x I w n



   (2.6) 

Lastly, applying the barren assumption, constrains the surface geometry to be local smooth and hence 

differentiable. Given a surface parameterization of ( , )f x y z  and its partial derivatives ( xf , yf ) the 

equation becomes:  

   ,( ) k i kk
E x I w x




   (2.7) 
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The surface normals, which control incident illumination and consequently shading, are related  to the 

macroscopic geometry only through the gradient operator10. Lastly, if a single point source, such as the 

sun11, is assumed, the equation reduces to:  

  ( ) iE x I w x



   (2.8) 

 cos xE   (2.9) 

Thus, the perceived image intensity ( E ) is variable with respect only to the surface gradient of 

geometry ( x ) and the cosine projected angle of the source. The complex integral rendering equation 

has reduced to the desirable form of equation (2.2), if the planetary assumptions are valid. These 

constraints are almost perfectly suited for recovering surface (normal) geometry from intensity images. 

This shape-from-shading framework is among the simplest of vision based algorithms, yet there is no 

record of utilization in these environments. Perhaps the lack of a pragmatic solution to dealing with 

possible albedo changes ( ( )x  ) and boundary conditions ( ˆ   x n x   ) have precluded prior 

attempts. A modification of this algorithm which handles these conditions is one of the techniques 

presented in this thesis.  

Optical sensors also need not be confined to measuring appearance (and utilized for recovering 

geometry), it is only required that they detect of optical phenomena and that unfiltered data is 

available12. LIDAR, RADAR, active illumination, stereo vision, thermal, and multispectral imaging are 

among the candidate sensors for this approach.     

Several arguments can be made against this mostly qualitative analysis. First, the knowledge could be so 

obvious that it must either be hardly effective or already in common use. Second, it is possible that the 

variation in any one environment is so large that a single contiguous appearance space does not suffice. 

The former point is not likely in planetary environments as demonstrated by the lack of monocular 

vision-based modeling approaches. The latter is more enduring, environmental variation and 

                                                                 

10
 Technically, , , 1x y

T
n f f    for most definitions of the gradient in computer vision. The terminology for 

appended vector and normalization are omitted to emphasize simplicity of relationship.  
11

 The sun subtends an angular diameter of 0.53 degrees. It is a small area source, but it is possible to approximate 
it as a point source for simplicity.  
12

 Availability of raw data is a non-trivial concern. Many commercial radar manufacturers, for example, l imit the 

ability to query specific returns or low level information that would otherwise fit into this illuminati on framework. 
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uncertainty must be accepted in any application. Improvements from any technique can only be gauged 

probabilistically.  

In light of these arguments, the thesis advocates experimental characterization of image-forming 

properties of domains to validate assumptions and gauge the variations in these distributions. Domain 

characterization also provides an ability to analyze the error of approaches new and old. Material 

frequency can be estimated from data in prevailing literature while unique reflectance functions can be 

found with calibrated imaging. Tessellated geometry in mines and lunar rock distributions are similarly 

suitable for characterization of effects like angular prominence of occlusion edges. The effects of sub-

macroscopic geometry can be resolved with commodity range sensors at shorter, calibrated distances or 

using ultra-precise survey scanners. Natural illumination in the case of planetary space is often known 

(dark or repeatable) with high confidence such that characterization is redundant. Detailed 

methodology for characterizing the appearance of planetary spaces is presented in the following 

chapters.    

 



Chapter 3:  
 

Thesis Statement 

This thesis addresses issues of data enhancement, optimality and presentation in planetary modeling by 

utilizing intensity images in the sensing process. The unique innovation of this research is the 

exploitation of constrained appearance with controlled illumination and estimation of material and 

geometric properties. This approach is made possible through understanding of optical domains and the 

parameters of image formation. Techniques developed herein enable generation of geometric models 

with quality and efficiency far beyond traditional ranging sensing methods.  

 

 

This thesis asserts that planetary models are vastly improved 

with Lumenhancement – the targeted exploitation of surface 

appearance by incorporating intensity images, active 

illumination and material properties with range sensing.  

 

Thesis Statement 

 

This approach is coined Lumenhancement  - from lum meaning “light” - because modeling sensors are 

overwhelmingly optical - and enhancement which describes the process of augmenting range sensing 

methods. Lumenhancement succinctly summarizes the core assertions of this work. First, that existing 

techniques can be improved, not replaced, with proper understanding of radiative transfer; and second 

that ideals of “gross generality” should not hinder adoption of targeted approaches that significantly 

enhance data quality when modeling is the principal objective of the mission.    
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Lumenhancement in this thesis lies at the confluence of three topical areas: (1) planetary modeling, (2) 

range and intensity image fusion and (3) active illumination. Planetary missions, where current state-

of-the-art modeling falls far short of necessity, serves as the catalyst for this research.  However, the 

principles introduced in this work are broadly applicable to other domains.  Active illumination is class of 

techniques for recovering information from intensity images championed by this thesis for relevance in 

these illumination-simple planetary environments. Lastly, fusion of intensity imagery from cameras with 

LIDAR ranging is the vehicle through which illumination-based techniques can address the issue of 

model enhancement. These themes are introduced below while relevant background is discussed in the 

following section. 

Planetary Modeling. The primary application context is robotic planetary exploration, where domain 

relevance, economy and necessity compel advances in three-dimensional modeling. This domain 

represents a substantial segment of hazardous, yet essential, field environments where robotic 

operations have clear advantages over human ones. Moreover, models currently generated from 

human, surface and remote sensing techniques are of insufficient quality to meet the reconnaissance 

demands of these environments. This research characterizes the optical appearance of this domain by 

performing empirical analysis of material and geometric properties. Domain knowledge as well as survey 

of common applications grounds the development of new approaches and enables generalization of 

techniques developed for any member environment to others. Ultimately, performance in real planetary 

settings serves as the gauge of efficacy.   

Range and Intensity Fusion. Direct sensing from robotic investigation is the only method of producing 

quality maps in remote planetary spaces; however, current modeling methodology produces poor 

returns on the cost of robotic deployment. The consequences are particularly egregious, including in 

terrestrial underground voids where inadequate methods are chosen over robotic mapping, often with 

“acceptable” risk to humans. Multi-sensor fusion can alleviate this problem by enhancing modeling 

beyond the sum of the individual sensor streams. In particular, range sensors, which measure 3D surface 

geometry and cameras which measure appearance have great synergy due to their complementary 

physics, common simultaneous usage and low cost. Mutual-information and cooperative data 

acquisition can enhance a spectrum of data modalities like range accuracy, acquisition speed, sampling 

density, reconstruction and scene understanding. However, the recovery of geometric information from 

intensity images is only probabilistically valid, and often fails in unconstrained, optically complex 

environments.  
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Active Illumination. Planetary environments have the unique attribute of simple natural illumination. 

This includes the total darkness of subterranean voids, polar craters and tidally locked bodies and 

environments that exist between darkness and direct (unscattered) sunlight such as skylights, asteroids, 

and lunar surfaces. The simplicity of natural illumination presents an opportunity to harness it for 

recovering geometric information in intensity images for fusion. Artificial lighting is required for imaging 

in dark environments, and thus may be explicitly constructed to recover scene information with 

calibration. Multi-flash photography and Structured Light sensing are just a few examples of techniques 

using this paradigm. In environments with simple natural illumination, like direct sunlight, the effects 

can be estimated in intensity imagery and reversed for the same purposes. In contrast, daylight surface 

environments hamper detection of artificial sources and preclude accurate estimation in images. 

The use of “active illumination” in this thesis is distinct from prior work, and includes both the 

traditional meaning of geometric modeling with artificial lighting as well as the estimation of natural 

lighting so that it may be used, in effect, as a calibrated source. Varying modes of active illumination are 

explored in this thesis from single point-sources to wide-baseline flash photography and multi-spectral 

sources. Each of these lighting modes constrains image formation to isolate salient features such as 

depth, surface normals, occlusion boundaries, and albedo. These features are fused with range data for 

targeted enhancement of model properties. 

3.1   A Model-Centric Approach 

The objective of this work is to integrate intensity imagery and the concepts of appearance in the 

modeling process to enhance planetary map data. The duality of cameras and range sensors in data 

fusion is a promising solution to this problem. However, the effectiveness of camera-based techniques 

are inextricably tied to their use in permissible environments with valid assumptions. Fortunately, 

existing illumination and imaging infrastructure in the unique planetary domain enables easy adoption 

of these techniques to current robotic operations.  

This synergistic relationship between fusion, appearance and domain is central to the idea of 

Lumenhancement. The profound improvements demonstrated by Lumenhancement are  made possible 

only when these seemingly disparate topics are considered simultaneously. Surprisingly, this central 

consideration of models is a completely novel way of looking at robotic modeling.  
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Conversely, being a model-centric approach, this work does not delve into the traditional problems of 

robots in modeling. The only metrics of concern are improvements in model quality. Topics such as 

mechanism, SLAM, autonomy, communications and computing are left to prior work where they are 

covered with authority. Approaches presented herein are designed to be integrated with any number of 

robotic frameworks in a strapdown fashion and this fact is demonstrated in experimentation.   

 



Chapter 4:  
 

Background for Topical Areas 

This section describes relevant background and prior art for each of the three topical areas , planetary 

modeling, and active illumination explored in this thesis. The thesis draws specific inspiration from these 

examples but novel contributions as they relate to appearance domains and models  are contrasted in 

each of the categories.  

4.1 Planetary Modeling 

Given the remote nature of these spaces, scant prior work in planetary robots have resulted in missions 

to the intended application environments. Perhaps the only cosmic example with significant mapping 

capability13, the two Mars Exploration Rovers (MER) have operated on the red planet since 200314. Each 

rover features a navigation stereo pair and panorama pair (PanCams) on a sensor mast and four smaller 

hazard pairs [Maki, et al. 2003]. Significantly, the rovers do not feature and active range sensing such as 

LIDAR, which is distinct from many terrestrially-deployed planetary robotic testbeds such as Scarab 

[Wettergreen, et al. 2009], Nomad [Vandapel, et al 1999] and K10 [Fong, et al. 2008]. Spirit and 

Opportunity have mapped over five kilometers of traverse each, of which 25% utilized automated 

terrain assessment from stereo [Maimone, et al. 2007]. Their mission has demonstrated the efficacy of 

vision-based modeling in the field, particularly multi-view techniques [Matthies, et al. 2007]. Geometric 

cues gleaned from images include point clouds and hazard maps from stereo vision [Goldberg, et al. 

2002] and visual odometry for estimating robot egomotion [Cheng, et al. 2005].  

The operation of MER produced several examples of tailoring domain knowledge to improve optical 

sensing similar to this thesis. The approach of [Willson, et al. 2005] quantifies and removes the optical 
                                                                 
13

 The earlier Mars Pathfinder rover, Sojourner, utilized a light stripe and stereo combination but could only 
calculate 20 points per image [Maimone, et al 2006].   
14

 As of 2012, one rover, Opportunity is still  operational. Spirit became disabled in 2010.    
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effects produced by Martian dust particles on lenses. The MER PanCams, which are intended to identify 

mineralogic and photometric properties of surface materials utilizing spectral filters, are calibrated with 

analog materials and tested against a range of environmental BRDFs. Their stereo capability also 

provides point cloud geometric models, though these multiple vision functions are considered 

independent in the mission [Bell, et al. 2003]. Lastly, knowledge of material BRDFs in the form of the 

opposition effect was used to reduce false positives in the descent imagery of the MER lander [Cheng, et 

al 2006].  

Notable terrestrial examples in planetary analog environments have also utilized characteristics of the 

domain for modeling. [Thompson, et al. 2008] examines the generalization of mapping as view sampling 

of features of interest. These features are not limited to geometry and can be geological or biological in 

nature, with application to finding life in the barren, planetary-like Atacama Desert. The segmentation of 

rocks using prior knowledge of texture, shape (raised boundaries) and shading from sun using 

ephemeris estimates for Martian imagery is explored in [Dunlop, et al. 2007]. [Vandapel, et al. 1999] 

documents sensing in the search for meteorites in Antarctica using the robot Nomad. Previously 

unfamiliar use of mapping sensors - stereo, LIDAR and RADAR – are characterized in planetary and white 

out conditions. Similarly, the work of [Pedersen, et al. 2008], characterizes performance of active range 

sensors in dark crater mapping. This thesis builds on prior planetary physics-based vision by performing 

characterization of the domain as well as the sensors. Techniques presented here also differ in their 

systemic nature and use for general geometric modeling as opposed to application specific problems.   

Subterranean Modeling 
In subterranean spaces, the work of Morris [Morris 2005; 2006; 2007] is particularly relevant to this 

thesis, as it investigates planning and autonomy for mapping in the underground domain described by 

Omohundro. Novel solutions are devised for error recovery in autonomous exploration, while maps are 

produced primarily as a byproduct of bootstrapping standard Simultaneous Localization and Mapping 

(SLAM) techniques. A method for integrating a mobile robot, retroreflector and theodolite for first 

autonomous survey is demonstrated on CaveCrawler. Resulting three dimensional models are presented 

as raw “point clouds” of range information or as a simple “mesh” of polygons generated from 

techniques such as Delaunay triangulation. Among the more effective methods of display presented are 

2.5D birds-eye-view “relief” maps with contextual photographic, temperature and gas sensing 

information.  
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However, a systemic approach to filtering or data enhancement is not emphasized, and attempts to 

fuse, cross validate, or re-acquire with multi-sensor data are left for future work. Nonetheless, models 

created from field experimentation represent the state-of-the-art in underground modeling in terms of 

quality and comprehensiveness. The vast amount of experimentation and number of datasets generated 

from the research – some of which are utilized in this thesis work – are impressive. This thesis expands 

upon the modeling paradigm presented by Morris by innovating an approach where the express quality 

of the data is the focus of sensing  

While this thesis could be considered the spiritual successor of the work of Omohundro and Morris, it 

distinguishes itself in several ways.  This research is the first to quantify the subterranean (and the more 

general planetary) domain using the metrics of sensor physics. Unlike prior work, which emphasized 

domain knowledge as challenges to overcome, this work utilizes that knowledge for sensing 

enhancement. Moreover, domain taxonomy is employed to target and infer the performance of 

developments in environments which are beyond the scope of immediate experimentation.  

Omohundro’s contributions (described in section 2.2) considered robot mechanical configuration for 

mapping underground voids using range sensing. Much of the design criteria concerned optimizing for 

sensor coverage from static viewpoints, a topic that is also explored in this thesis, but with mathematical 

rigor using sampling theory (see section 6.2). This work specifically rejects LIDAR-based range-sensing as 

a panacea for modeling and argues for a multi-sensor approach. The view of data enhancement and 

visualization advocated in this thesis also differentiates itself from that of Morris. Color information is 

not simply “painted” on range models, but is used to texture, interpolate and align data. Adaptive point 

displays are explored to combine the benefits of point clouds with that of meshing. Even realism and 

accuracy are not sacred; non-photorealism and texture replacement are exploited to enhance 

readability and awareness.  

Localization and Navigation 
Much of the prior mapping research described here have utilized SLAM for integrated autonomy and 

modeling, based on the seminal work of [Whyte, et al. 1996] and [Thrun, et al. 2000], among others. 

Traditional use of the words mapping and modeling in robotics context usually references these 

approaches. This thesis also utilizes variants of these approaches in parts of the experimentation 

framework. However, SLAM and navigation techniques are treated as black boxes and no significant 

novel contributions are made in this area from this work. Instead, this thesis focuses on the sensing 
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aspect of models and the utilization of all available appearance knowledge in modeling. The approaches 

here complement and assume the availability of state-of-the-art localization and navigation.     

4.2 Range and Intensity Fusion 
The fusion of range and intensity imaging sensors has been studied in depth for range filtering, 

interpolation, contextual understanding and visualization. Range sensing and intensity imaging are 

natural complements and arguments for fusing these sources to produce 3D models are compelling. 

Typical beam range sensors are single-detector and require mechanical actuation for scanning, resulting 

in low throughput and sparse readings15. Conversely, CCDs are solid-state, high throughput and high 

density but do not directly provide geometric information. Expensive LIDAR systems are already the de 

facto standard for 3D sensing in robotics; quality cameras are light-weight, low-power, inexpensive, and 

can greatly enhance the ability of LIDAR for little extra cost. This thesis advocates range and intensity 

fusion techniques for enhancement of planetary models. A brief survey of existing fusion research 

pertaining to the thesis follows.  

Edge Localization. Perhaps the most studied concept in range/intensity fusion is the detection of 

boundary edges to filter range models. This is particularly beneficial in aerial mapping, where scanned 

LIDAR height data is rough and poorly localized due to sensor ego-motion, while instantaneous image 

capture retains crisp features. The work of Shenk and Csatho is an early success in deriving geometric 

cues from intensity imagery for application in filtering range models [Shenk, et al. 2002]. LIDAR digital 

elevation maps are fused with 3D terrain models recovered from multiple aerial images using human-

directed stereopsis. The stereo data is dense, but often produces oversmoothing and matching errors, 

while the sparse LIDAR data must be interpolated16, but has a predictable height variance. Both sources 

exhibit edge inconsistencies. The innovation of the research is that intensity edge features are utilized 

from the images to clean edges in the fused heightmaps.  

More recent related work [Holte, et al. 2008] have used the superior localization of intensity imaging to 

enhance extraction of gesture features in motion-blurred range video. Human gesture detection 

                                                                 
15

 Lensed range sensors like flash LIDAR are a nascent technology that promises high throughput through CCD -like 

silicon range detectors. Current models, however, offer lower throughput than that of most commercial point 
scanners with much lower range accuracy. The theoretical accuracy of these devices is limited by the use of flash 
sources which create cross talk and ambiguities.   
16

 The method actually calls for clustering of the LIDAR heightmap to produce elevation “patches,” which is 

equivalent to performing a nearest-neighbor interpolation. 
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requires both identifying differential edges in consecutive video frames and extracting geometric 

features from these edges.  The latter can only be done using range space, while the former is 

accomplished rather poorly for several reasons. Oversmoothing of occlusion boundaries by linear 

interpolation during construction of the range image results in low gradients at range edges. High 

measurement variance exhibited by the flash LIDAR used in experimentation produces a noisy gradient 

in naturally smooth areas [Holte, et al. 2008], [Lindner, et al. 2008]. Lastly, fast motion of the subject 

creates motion blurs and ambiguities when captured by a slow exposure ranging device. By performing 

edge detection in intensity space, searching is quickly narrowed to regions of interest and resultant 

edges can be checked for false positives. Other contemporary edge-fusion research includes using 

Markov Random Fields, a probabilistic Bayes framework, for segmentation [Chang, et al. 2001].   

Super Resolution. Upsampling is also a compelling argument for intensity imagery. Schenk’s method re-

parameterizes both data sources as sets of low dimensional surface patches. The application does not 

require minute 3D detail, and decimation has the benefit of macro-scale robustness and algorithmic and 

memory simplicity. However, high resolution imagery contains information about scene structure 

between range readings that cannot be deduced from pure interpolation or decimation of sparse LIDAR 

data. If image intensity correlates even weakly with range, then range information can be inferred from 

images beyond the information-neutral averaging process of interpolation. The process of correlating 

co-located range and intensity readings and inference of the relationship for interpolation is known as 

super-resolution. Super-resolution has potential for greatly increasing the coverage, density, and 

accuracy of 3D measurement with very low overhead.  

A general model for fusing raw LIDAR and image data into super-resolution range images using a Markov 

Random Field (MRF) was explored in Diebel and Thrun’s seminal paper [Diebel, Thrun 2005] (see also 

section 0). MRFs are undirected graphs that represent dependencies between random variables and 

have been used extensively in computer vision for noise removal, feature matching, segmentation and 

inpainting [Li 2001]. The popularity of the MRF stems from the ability to model complex processes using 

only a specification of local interactions, the regular grid nature of CCD images and the maximum 

likelihood solution requiring only direct convex optimization. In fact, it has been recently shown that 

MRF solutions can be computed on modern Graphics Processing Units (GPUs) for real -time speed ups 

[Vineet, et al. 2009].    

Diebel and Thrun surmised that higher resolution intensity (color) data could be used to increase the 

range accuracy of interpolated points. In particular, it was noticed that low-gradient areas in the 
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intensity image correlated highly with true low-gradient (flat) surfaces beyond reconstructions from 

noisy, single-shot LIDAR readings alone. The results in a uniformly and sufficiently illuminated regular 

office environment are quite compelling. Cameras are able to turn LIDAR scans into dense range images 

with very low computational overhead. The ability of the method to smooth point clouds using areas of 

flat image information was convincingly shown, but the converse of enhancing a point cloud using image 

texture was not. The work of Diebel and Thrun has generated critical interest in range/image super-

resolution, and notable extensions have proposed more expressive MRF models and feature detection, 

[Yang, et al. 2007], [Torres-Mendez, et al. 2007], [Gould, et al. 2008], [Harrison, et al. 2009].  

The related work of [Mostafa, et al. 1999] proposed fusion of shape-from-shading reconstructions with 

LIDAR in a neural network framework. Shape-from-shading methods recover the per-pixel surface 

normal in intensity images by estimation of illumination and reflectance functions in the geometric 

appearance model. If the estimates of illumination and reflectance are accurate, SFS methods are much 

more effective at revealing true geometry than strictly probabilistic methods (such as edge finding). In 

Mostafa’s approach, the image depth reconstruction is fed into a neural network which encodes the 

expected error of the image estimates with respect to the range data (assumed to be perfect). This 

expected error is then used to correct points on the SFS model where there is no corresponding range 

value. The resulting corrected SFS model is naturally dense.  

While this Mostafa generates physics-based geometric image features and predates the unconstrained 

image fusion of Diebel, it is not without several fundamental limitations. Firstly, iterative sample-

neighbor interactions cannot be encoded in a feed-forward neural network, meaning that the resultant 

surface may neither be smooth nor consistent. Moreover, the model does not account for sensor or 

interpolation uncertainty. Training of the neural network is slow and prone to overfitting. Most 

importantly, there is an assumption that it is possible to train a function that will (correctly) determine 

the error of SFS points without corresponding range values using locations in the scan with these values.  

Such an error function would be highly dependent on sampling specifics, computationally intractable for 

complex scenes and undeterminable in the general case.  

Feature detection. Intensity and color information, like geometry, is an independent attribute of objects 

that can be used for identification. The high density and multi -channel nature of color imagery once 

again shines in feature detection, as it is often more feature rich than its sparse 3D counterpart. Using 

vectors of both range and intensity features often improves discriminativity and detection rate, while 
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matching of geometric features may be sped up with preliminary search pruning in intensity space and 

vice versa.  

The work of Lee and Stockman demonstrates assembly line detection of partially occluded objects [Lee, 

et al. 1998] using fused range and intensity imagery. Their method generates features called wing 

primitives which are view-dependent 2.5D extensions of polyhedral objects and line drawings [Baumgart 

1975], [Malick 1987] to range images. Polyhedral line drawings are a framework for reasoning about of 

2D projections of 3D objects by simplifying shape as collections of faces, edges and vertices. The types of 

vertices in the polyhedral world are deterministic and representation of objects reduces to edge labeling 

and vertex selection from a dictionary. Objects are detected by matching the order and types of vertices 

with a known template. However, as projection is a lossy transformation, inferring 3D structure from 

edge order produces ambiguities which are unacceptable with a large catalog of objects. Wing primitives 

employ range information to resolve these ambiguities, while more discriminative intensity information 

is used for segmentation and edge extraction. Use of both range and color data also increases the 

probability of producing matches even though part of the object may be occluded. Similar work utilizing 

augmented intensity and range features include that of [Baltzakis 2003], for landmark detection in 

occupancy grid based SLAM, [Stipes, et al. 2008] for neighbor-matching in Iterative Closest Point (ICP) 

alignment of overlapping range models, and [Gould, et al. 2008] for indoor object detection.  

The use of range and intensity modalities for online learning has also been explored with gre at success. 

Stanford’s winning entry in the 2005 DARPA urban challenge, the robot Stanley, uses range and color 

fusion for high-speed terrain classification. Short LIDAR sensing horizon at high speeds greatly reduced 

the robot’s ability to avoid obstacles; range data alone was insufficient in detecting obstacles far enough 

away to maneuver around them. Cameras with targeted fields-of-view augmented the obstacle 

avoidance ability of Stanley by conservatively overclassifying obstacles at range [Thrun, et al. 2006]. 

Planned trajectories avoid these obstacles with margin while fine maneuvering is made with short range 

LIDAR. The accurate 3D models produced up close are then used to automatically tune image 

parameters. This enables adaptation to new drivable non-paved terrain such as grass and dirt and 

provides robustness against illumination changes in imagery. More recent application to automated 

learning is presented in work of [Mastin, et al. 2009], which uses optimization of the mutual information 

between range and intensity to learn global alignment of unregistered aerial imagery and elevation 

maps.    
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Visualization. Recent cost reductions and accuracy increases in both cameras and ranging sensors have 

led to marked advancements in the field of computer graphics. Rendering, the presentation of scene 

models under differing viewpoints, requires precise knowledge of geometry, material and illumination, 

necessitating some coordination of range and color acquisition [Waggershauser 2005]. This information 

is often estimated for rending of real scenes by texturing single-view photographic color onto raw 

geometry [Fruh, et al. 2003], [Morris, et al. 2007]. Texture mapping is fast and simple, but fails to 

produce believable results when viewed off-perspective, except under ambient illumination. Techniques 

beyond texture mapping are generally divided into photorealistic and non-photorealistic methods. 

Photorealistic rendering has demonstrated high potential in digitizing immersive, multi-perspective 

scenes for CGI films, games, and 3D displays. Moreover, the advent of mixed range and color sensors 

has made large scale digitization a possibility in the last decade. However, while producing stunning, 

archival quality results, collection of photorealistic scene data requires prohibitively expensive and 

complex gantries [Levoy, et al. 2000]. Consequently, much research has been dire cted towards image-

based rendering, which infers the external appearance of the scene from a four dimensional light-field 

[Pulli, et al. 1997]. This light-field can be captured by taking calibrated images about a hemisphere of 

views using setups like camera arrays [Wilburn, et al. 2002], plenoptic cameras [Ng, et al. 2005], and 

coded aperture masks [Veeraraghavan, et al. 2007]. However, drawbacks of these image-only methods 

include narrow angles of sampling, poor sampling density and poor geometric reconstruction. Debevec 

proposes a hybrid technique of collecting low resolution range models coupled with an environmental 

radiance map captured using a mirrored sphere contained in the scene [Debevec 1998]. The results 

present sufficient realism in rendering synthetic objects placed in a pre-captured scene, but cannot 

extrapolate a full set of realistic views. More recently, hybrid techniques have used co-registered 

camera and end-user LIDAR systems with GPU acceleration to accurately build geometric models in real-

time while enabling freedom of movement during full light-field capture [Todt, et al. 2005], 

[Waggershauser 2005].  

Contrary to imaged-based rendering, non-photorealistic rendering (NPR) techniques do not attempt to 

reproduce the appearance of a scene under novel views. Instead, NPR techniques convey the most 

information to the viewer by exaggerating color, texture, occlusion edges or illumination [Gooch, Gooch 

et al. 1998; 2001]. In particular, NPR has found wide-spread acceptance in the gaming industry, with 

examples including cartoon [Borderlands, Gearbox Software 2009] and 1950s art-deco rendering 

[Bioshock, Irrational Games 2008]. Mostly recently, interest in non-photorealism has renewed as a 
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potential method for improving situational awareness in human control of equipment with applications 

to mapping, combat and mining [Summers, et al. 2005], [Winnemoller 2006]. 

In the aforementioned fusion work, the implicit assumption is that intensity or color discontinuities 

correlate with range discontinuities. This is tenuous at best, as evidenced by the vast prior art in image-

based shadow removal, illumination invariance, and material invariance [Finlayson, et al. 2001], 

[Maxwell, et al. 2008]. Yet, this assumption features in the vast majority of range/intensity fusion 

research. Diebel’s method, for example, biases fronto-parallel planes, which are commonplace in the 

office application environment presented, but rare in field robotics. Even in cartoon rendering, edges in 

a single-view image may correspond to albedo, self-shadowing or perpendicular normals, and not 

discontinuity in range. Generating 3D geometry from a 2D projection is an ill -posed problem. In general, 

material properties cannot be separated from appearance without a priori knowledge [Shenk, et al. 

2002]. 

This thesis extends these range and intensity fusion techniques to a subset of outdoor environments by 

utilizing domain knowledge. Intensity imagery is a necessity for exploratory robots, particularly 

underground, but it is often not used in 3D modeling. This work asks: if imaging is a necessity and most 

imaging requires active illumination, why not utilize intelligent illumination? This work specifically 

solves the issue of under-constrained image reconstruction by utilizing calibrated light fields and 

estimating material reflectance and geometric properties to constrain image formation. Changes in 

image intensity can be constructed to correlate with range or material changes, to a high degree of 

probability.   

4.3 Active Illumination 
Actively illuminated sensors use calibrated, artificial light to measure scenes. Natural illumination, 

whether complex or nonexistent, often precludes visual, geometric scene understanding. Use of artifici al 

lighting clarifies appearance by controlling one or more factors of under-constrained image formation. 

Actively illuminated sensors include LIDAR, RADAR, and structured light – which directly measure 

geometry – and intensity imaging – which measures a product of material and surface properties. 

This research utilizes a combination of Time-of-Flight light sensing and active intensity imaging for 

planetary modeling. While light ranging is well established, active intensity imaging and the fusion of 
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both for outdoor modeling is a nascent field first addressed by this thesis and preliminary work of the 

author [Wong, et al. 2009], [Wong, et al. 2012].   

A rich body of prior work (discussed below) exists in the use of actively illuminated intensity imaging for 

indoor purposes. Undoubtedly, the largest obstacle to using active illumination in general outdoor 

scenarios is the existence of brilliant illumination from the sun. Sunlight irreversibly suppresses the 

signal to noise ratio of the artificial source and even dazzles many near-infrared LIDAR sensors. 

Subsequently, much research has focused on outdoor illumination estimation [Finlayson, et al. 2001], 

*Maxwell, et al. 2008+, effectively utilizing the sun as a “calibrated” light source.  However, even with 

perfect ephemeris and registration with the sensor, secondary, but significant contributions from the 

sky and interreflections from the scene cannot be unambiguously separated from direct sunlight.   

Many planetary environments are prime candidates for use of active illumination for the obvious reason 

of natural darkness. However, total darkness (while advantageous) is not an absolute requirement for 

using these techniques. Bounded planetary environments with point sources and negligible scattering 

atmosphere, such as sun-lit craters, or ephemeral sources, such as head lamps in mines, are amenable 

to active illumination. For example, the contribution of the natural light can be removed by exploiting 

superposition property of light and subtracting a background image. This section introduces some of the 

prior research in active intensity imaging with potential for use in planetary modeling. The corpus of 

active illumination techniques can be divided according to the complexity of the light source modeled. 

Figure 8 illustrates some common light source setups, of which 1-3 are utilized in this thesis.    
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Figure 8. Sample Artificial Light Source Configurations. A simulated rocky scene is illuminated by (1) a single near point 

source, (2) a directional linear source, (3) multiple near point sources, (4) multiple, spectrally -distinct sources.   

 
Shape from Shading. The shading of an object correlates with geometry in the form of surface normal 

direction. Humans, in particular, are attuned to perceiving geometry from shading information, a fact 

exploited by artist and painters [Horn 1970], [Zhang, et al. 1999]. However, the equations of image 

formation demonstrate that appearance is an often inseparable product of illumination, geometry, and 

material. Nonetheless, reconstruction of 3D shape from 2D imagery is a classical problem in computer 

vision. Automated generation of accurate geometry from a single image has immense ramification for 

modeling and digitizing the world from pictures. Unfortunately, this is a profoundly difficult problem for 

reasons mentioned previously. Early research into Shape from Shading (SFS) often restricted multiple 

parameters of appearance, in the form of assumptions, to make the problem tractable. The seminal 

thesis work of Horn surmised the relationship between geometric gradient and surface reflectance 

(manifested in the image) as a non-linear first order partial differential equation in two unknowns [Horn 

1970]. The solution to shape recovery was numerical integration of five equivalent ordinary differential 

equations along characteristic curves from an initial known location. Horn’s work assumed known 

uniform (diffuse) surface reflectance, source type, source direction(s), smooth surfaces, and initial 

curves. However, even with these assumptions, there is still ambiguity in whether a surface is convex or 

concave. Thus, experimentation was limited to simulated convex objects and an application to facial 
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nose detection where absolute structure obtained was less important than differences between 

subjects.   

Successive research has extended the Shape from Shading of Horn with ability to handle subsets of more 

complex or unknown lighting, non-convexity, specularity, non-uniformity, inter-reflections [Nayar, et al. 

1990; Yang, et al. 1997], and cast shadows [Stork 2006; Smith, et al. 2006] among others. The gamut of 

work can be further classified according to the type of solution-finding technique used. These 

techniques include energy minimization, surface propagation, local and linear methods [Zhang, et al. 

1999], of which minimization and local methods are of particular interest in this text. Minimization 

methods treat the problem as an optimization of recovered shape with constraints such as local 

smoothness, unit brightness, and integrability. These methods have arguably emerged as the most 

robust in generating physically-valid shapes with minimum depth error as compared to ground truth. 

However, global minimization produces significant oversmoothing of surface detail and initialization of 

boundary conditions is a difficult problem in itself. At the opposite end of the spectrum are local 

methods which approximate neighborhoods at the pixel level with known geometry such as a sphere. 

Slant and tilt normal angles are estimated by inverting the image formation equations at each pixel 

using the geometric assumption. Local methods produce globally inconsistent models with poorer 

accuracy, but they preserve local surface features well and do not require boundary detection [Lee, et 

al. 1985], [Ferrie, et al. 1989].  

The common theme in SFS research is that illumination is known or can be estimated from image cues. 

Furthermore, illumination is implicitly required to be expressible as a linear super-position of simple 

sources. While these illumination requirements are not easily met in general environments, SFS 

algorithms have high relevance to planetary modeling. Ideal lighting conditions can be expressly 

constructed in dark environments for the purpose of shape recovery. Moreover, the prevalence of 

Lambertian-like materials enables the use of the simplest and most robust algorithms.  

Separable BRDFs and Color. The spectral composition of illumination is a fundamental component of 

image formation. When contributions to the reflectance functions of materials are linearly separable, 

knowledge of light color can be leveraged to recover details of scene appearance. Schafer’s dichromatic 

model of reflection asserts that the total reflectance function of a surface can be decomposed as 

additive diffuse and specular components [Shafer 1985]. Most materials further obey the Neutral 

Interface Reflectance (NIR) property, which models the specular component as a perfect spectral mirror 
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of the light source. The appearance of object color is explained by spectral shifts caused solely by diffuse 

interaction between the incoming light and material pigments [Lee, et al. 1990] 17.  

The work of [Zickler et al. 2006; 2008] uses the NIR assumption to remove specularities in images lit by a 

single point-source of known color. The key idea is rotation of the image’s RGB pixel space so that one of 

the basis vectors (R, G, or B) aligns with the source color. This rotation transforms tri-channel RGB space 

into a colorspace of two diffuse and one specular channels, called the SUV space. The specular channel 

(S) is the component parallel to the source color and therefore encodes all of the specular reflection 

along with some unknown portion of the diffuse. Discarding the S channel produces a 2 channel image 

consisting entirely of diffuse reflectance. Unlike heuristic, illumination-invariant colorspaces such as LAB 

or r-g chromaticity, which are projective, coordinate rotation is a linear operation and preserves shading 

information. Thus, the power of the SUV transformation is that it enables vision algorithms requiring 

Lambertian reflectance to run natively on non-Lambertian data. In particular, Zickler demonstrates that 

the SUV transformation can increase the accuracy of surface normal recovery on highly specular objects. 

Conversely, specular areas or objects can be identified by analysis of the S channel. A degenerate 

condition occurs when the illuminant and scene have identical colors. In this case, the entirety of the 

image’s spectral power is distributed in the S channel and no diffuse information will remain after 

removal. While this scenario is extremely rare in practice, the signal to noise ratio (SNR) of the diffuse 

components is adversely affected by the relative spectral power distributions of the scene and the 

source.  

Separable BRDFs are also featured in [Narasimhan, et al. 2003], which derives a class of photometrically 

invariant features from multiple images of the scene.  Unlike the SUV transformation, the work makes 

no assumption of separable diffuse and specular reflectances, but requires that the BRDF can be written 

as a sum-of-products form of purely geometric and material functions. Amazingly, many analytic BRDFs 

are factorable in this way. By modulating either geometry (light position, correlated pixel locations in a 

moving scene) across several images while fixing material properties   (source color, RGB filters) and vice 

versa, a feature transformation can be constructed for each pixel that is invariant to either material or 

geometry changes. Narasimhan proposes using the determinant of block sub-matrices in an augmented 

observation matrix of a pixel. The matrix consists of a single pixel’s value across changing material 

images (R, G, and B spectra) in the rows and changing geometry images (light positions) in the columns. 

The choice of sub-matrix governs whether all the geometric or material terms are implicitly canceled in 
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 Notable exceptions to the NIR model are shiny metals. 
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the determinant arithmetic. The resulting feature value is dependent only on the property that was not 

canceled and is densely generated for every pixel in the scene. In particular, the geometry invariant form 

is significant for its use in detecting and discriminating unknown materials without requiring 

spectroscopy. It requires at minimum two tri-channel RGB images of two sources illuminating the scene. 

The 3x3 observation matrix used in the paper handles materials with 2-term BRDFs; however, the 

technique can be easily generalized to more terms.   

Multi-Source Methods. As a result of the close coupling of lighting direction and surface normal in 

reflection (a dot product relationship), multiple calibrated light sources (or a single motional source) can 

be used to understand geometry in a variety of ways. One such example is Narasimhan’s 

aforementioned photometric invariants, which were partially generated by acquiring multiple images of 

the scene under differing illumination positions. 

A particular class of methods assumes known (or estimable) source positions in three or more images to 

recover three-dimensional surface normals. These methods, collectively called photometric stereo, are 

generalizations of shape-from-shading (SFS) and were first explored for the Lambertian case by [Ikeuchi, 

et al. 1979] and [Woodham 1980]. The problem can be recast as solving a matrix equation of three 

unknowns, which are the three components of the normal vector at a pixel. The solution can be 

obtained by inversion of the 3xn matrix of known source positions and pre-multiplying with the pixel 

brightness value. If the number of source positions is three or greater, the over-determined system 

estimates normals unambiguously, unlike in the SFS case. While in theory, these methods will recover 

the normal at every pixel exactly, they are quite vulnerable to measurement noise in practice. The 

resultant normal vector field, while perceptually correct, often cannot be integrated directly if it is not 

conservative to numerical precision. This noise grows as the angular separations of the sources in the 

scene are reduced. Like SFS, these methods also suffer from inaccuracies due to shadows and 

interreflections. However, in contrast, the use of a calibrated mount of three or more sources is 

operationally infeasible for many mobile applications. Recent extensions of photometric stereo methods 

have made them more robust to unknown source locations [Hayakawa 1994], complex reflection and 

shadows. 

Multiple sources, in the form of multi-flash photography, can also be used to specifically detect 

occlusions and object boundaries. These “depth edges” are distinct from changes in material and 

lighting, but are indistinguishable from both in general imagery. Raskar’s multi-flash method exploits the 

appearance of cast shadows to segment foreground occluders from the background [Raskar, et al. 
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2004]. The main idea is that angular separation of a light source and the camera enables the imaging of 

shadows, but the same shadows will not be visible under different illumination parameters. A single 

image is taken of each source solely illuminating the scene. As long as every pixel is visible in at least 1 

image, an unshadowed reference image can be generated by storing the max pixel values across all 

images. All source images are then represented as per-pixel fractions of the max image. Searching for 

large negative steps in the ratio images along epipolar lines between the source and camera center will 

detect the depth edges. At least two sources are required for single-dimension boundary detection, and 

three sources are required for full two-dimensional detection in the image plane. The angular separation 

of the sources (baseline) determines the valid imaging volume. Depth edges beyond this range do not 

produce visible shadows and edges too near produce detached shadows. The method is surprisingly 

robust for its simplicity; only large specularities produce false positives, but can be partially remedied by 

conducting a sanity check amongst multiple images or SUV specularity removal.  

Multi-flash imagery can be used in conjunction with albedo estimation or geometry invariant features to 

validate material edges. Moreover, the high spatial resolution of CCDs enables pixel boundaries 

detected in this manner to clean and localize interpolated depth maps from LIDAR.  

Structured Light is a method for direct range-finding in intensity images using image-based triangulation 

of pixels in a light pattern projected onto the scene. Often this light is a high-intensity coherent laser 

“stripe” (see Figure 8 – (2)) that overwhelms the reflectance characteristics of the surface in a narrow 

band to ensure detection. While this is not a true intensity imaging technique, the use of “active 

illumination” and the resultant geometric measurement make this a promising technique for planetary 

mapping.  

The work treats structured light as a direct range sensor to which Lumenhancement with intensity 

images can apply. There are several advantages to using structured light as the primary sensor 

compared to time of flight methods. Programmable light sources require no mechanical actuation, 

unlike beam based LIDAR. Moreover, there is no constraint on the sample order or fixed resolution of 

parallel methods like flash LIDAR, a fact exploited in this thesis for the development of a new sensor. 

However, in the view of this thesis, the similar resolution and physics of structured light to monocular 

vision make this technology slightly comparably suitable for fusion than LIDAR range sensing.  

The active illumination methods discussed in this section are well-adapted for planetary use with little 

modification. While the primary innovation of this thesis is the utilization of active illumination methods 
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in intensity image to improve LIDAR range modeling, the mutual synergy of both sensing modalities 

should not be ignored. The availability of sparse LIDAR data, for example, greatly reduces the complexity 

and uncertainty in SFS. Concavity, boundary and source direction can be ascertained with accuracy 

beyond current image-based estimation techniques even with poor LIDAR data. Local SFS techniques, 

which produce asymptotic distortions in noisy data, can be regularized with a priori knowledge of depth 

such that they are both volumetrically consistent (like global techniques) and still feature preserving. 

Even attached specularities are easily removed in multi -flash imagery by validating with the depth 

gradient. The use of preliminary range data to improve intensity image techniques in turn improves the 

final range estimate. This is the compelling motivation for sensor fusion in underground application: the 

end result is unachievable in the sum of its parts and unachievable in other outdoor domains.     

4.4 Range Sensing Technologies 
This research primarily addresses time of flight or frequency modulation LIDAR ranging techniques. 

However, triangulation-based ranging has been used to great effect for surface and indoor mapping. 

Triangulation utilizes the disparity of points in multiple perspectives of a scene to generate depth, which 

is inversely proportional to disparity. The offset transformation between these perspectives is called the 

baseline. Increasing the baseline enhances range accuracy, but also results in smaller overlap for 

geometric measurement.  

Stereo Vision and Structured Light are popular implementations of triangulation. Stereo vision uses two 

cameras to image the scene and statistical matching algorithms to produce the disparity map. Stereo 

requires only simultaneous capture of two images and results in the fastest geometry generation. 

Acquisition often utilizes natural illumination and thus also consumes the least power. However, the 

correspondence problem is computationally expensive across images and prone to scene-dependent 

error. Structured light uses active illumination to paint the scene unambiguously and a monocular 

imager to detect the projection of the illuminated point. There are several methods for resolving the 

position of scene points [Salvi, et al. 2004] with “codes.” These codes require the capture of between 

log n  and n  images, where n  is the number of sample points (pixels), for unambiguous recovery. 

Despite increased data, the approach is computationally simpler than stereo vision. Other, graph-based 

approaches are capable inferring the disparity map from a single image, but have many of the same 

problems as stereo correspondence.      
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While many of the improvements in this thesis apply readily to triangulation-based range measurement 

techniques like stereo vision or structured light, the characteristics of LIDAR are particularly 

advantageous in underground modeling and fusion with intensity imagery. Some of these advantages 

are discussed below to highlight the inability of triangulation-based techniques alone to match fused 

LIDAR and intensity imagery in addressing the issues of underground modeling. 

Dark Operation. LIDAR is well suited for dark environments. Infrared lasers are scattered less by 

atmospheric particles and produce higher signal to noise at range than visible-light CCDs. This feature of 

LIDAR makes it advantageous for fusion with intensity imagery over triangulation techniques, which 

generate measurement using the same physical processes as imagery and thus exhibit the same noise 

characteristics. Stereo in particular has problems integrating with active illumination. Correspondence 

techniques rely on uniform appearance of points across multiple views, an assumption which holds only 

strictly for highly-textured, convex Lambertian scenes under ambient illumination. The use of active 

illumination, such as isotropic point, multi-flash, and multi-colored sources often creates harsh shadows, 

changing surface shading and spectral shifts in appearance. While these cues are often good local 

approximations of shape or material, global consistency, such as that offered by LIDAR is required to 

bound estimation errors. Stereo reconstruction, which has demonstrated critical success for low-power, 

mass-sensitive planetary surface mapping, is susceptible to these issues and performs less desirably in 

dark modeling [Pedersen, et al. 2008]. 

Range robustness. In theory, LIDAR range resolution is invariant to range value (Equation 3.1). In 

practice, LIDAR measurement accuracy varies weakly with range, with the major sources of error being 

photon shot noise and charge conversion noise in the detector. Both these errors increase slightly with 

dwell-time [Hussmann, et al. 2008], though they are easily mitigated with signal processing. 

Triangulation methods, however, which rely on a finite baseline between views with constant lateral 

pixel density in the imagers. The quantization of projected area (pixelization) results in range resolution 

decreasing and error increasing proportionally to the square of range (equation 3.2) [Rankin, et al. 

2005]. Though, recent developments in stereo algorithms have honed robust sub-pixel estimation to 

reduce this effect [Stein, et al. 2006]. By same principle, triangulation produces ample lateral density in 

the near field - where density is arguably less important - and sparse measurement at range. While 

actuated LIDAR scanners also exhibit a finite angular resolution for sampling at range and non-zero 

beam divergence, near-field sampling can often be reduced for significant speedup.   
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LIDAR Range Resolution. The minimum discernible change in range (  ) is equal to the speed of light ( ) times half the pulse 
width ( ).  
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Triangulation Range Resolution. The minimum discernible change in range (  ) is equal to the square of the range ( ) divided 
by the baseline ( ) and focal length ( ) times the left-right disparity (  ).  

 
Erroneous measurement. LIDAR ranging measures the period between transmission and detection of 

light signals reflected off surfaces. The range to a surface is a straight forward linear proportion to the 

Time-of-Flight (TOF) of the light signal and the sensor is well-approximated by a pinhole. Unlike 

triangulation sensors, the quality of TOF measurement does not depend on the appearance of surfaces, 

only the that the strength of the return is sufficient for detection. Stereo vision relates disparity of 

identical pixels in multiple views - the correspondence problem - to depth. Incorrect matches often 

result from differing regions exhibiting similar textures, while unmatchable pixels occur in low texture, 

specular, or cast shadowed regions. Both these problems result in artifacts in the final depth estimate 

and incorrect calibration can magnify these errors. The practical resolution of a stereo model may be 

much lower than a LIDAR model for particularly difficult scenes. As the appearance of the scene strongly 

influences the quality of reconstruction, stereo vision is less appropriate for error-bounded, survey-like 

modeling. Structured light produces cleaner models than stereo vision in unknown environments. The 

use of single-point measurements or coded light patterns generates clear matches in the image. 

However, structured light sensors are still susceptible to scene appearance. Subsurface scattering causes 

poor localization of the measurement point and highly specular surfaces may produce ambiguous 

matches through multiple reflection (known as mixed pixels) [Levoy, et al. 2000]. Like stereo vision, the 

disparity between transmitter and detector can cause shadows in occluded regions.    

LIDAR measures only range and in some cases single-frequency reflectance. In contrast, stereo vision 

and structured light can both generate models with full spectral color (under certain illuminants). With 

LIDAR systems, color information can only come from co-registered cameras which must be actively 

illuminated underground. Thus, it can be argued that if actively illuminated monocular imagery is 

necessary in addition to LIDAR, structured light triangulation should be used instead to generate a 

second, high density, absolute geometric observation. Indeed, the largest differences between point-
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source illuminated imagery and structured light is the complexity of the programmable light source and 

the type of geometric information generated from the imagery. Most of the techniques described here 

can be implemented on a co-registered LIDAR and structured light system with great effectiveness.  

While there are unique merits to any combination of sensors working together, there is perhaps a point 

where opportunity cost exceeds the gain. This thesis advocates the use of monocular imagery with one 

or two point sources as a middle ground between system simplicity and accuracy. Most underground 

robots require illuminated imagery for documentation or operator oversight; however, none of them 

require complex programmable light sources like those needed for structured light.  Thus, intensity 

imagery can be bootstrapped to existing infrastructure, such as underground robots or even human-

driven mine vehicles, with minimal invasiveness. With simplicity and adaptability, intensity fusion 

techniques have great potential to be game-changers underground.     

Other arguments against fusing triangulation-based sensors with LIDAR include the introduction of 

erroneous measurements to pristine LIDAR models in difficult environments; complexity in calibrating 

for zoom imagery; and sensitivity to decalibration which can occur with frequent vibration in rough 

terrain.  

 





Chapter 5:  
 

Characterization of  
Planetary Appearance 

This section quantitatively describes planetary appearance through exhaustive experimentation. Two 

parameters of image formation - material and geometric distributions – are characterized with physics-

based measurement in representative environments. The third parameter, illumination, is arguably 

trivial to characterize, generally known, and is viewed as an exploitable (and changeable) entity. 

Furthermore, light-complicating media, such as dust is assumed to be negligible in this work. Thus, 

empirical characterization of light and atmospherics in the domain is not considered here and instead 

left to existing and future literature.     

5.1 Analysis of Material Properties 

The appearance of a scene under illumination is governed largely by the Bidirectional Reflectance 

Distribution Functions (BRDFs) of materials found in the scene. BRDFs describe the transmission of  light 

as the reflection of incoming light rays to outgoing rays. This occurs in the hemisphere normal to every 

point on surface (Figure 9). As rays can be parameterized in two spherical coordinates, the BRDF is a 4-

dimensional function. However, this is an idealization, as light does not truly “bounce off” immediately 

and singularly at each point. Subsurface scattering reflectance functions (BSSRDFs) more generally 

describe radiometry both at the surface and interior of materials in the formation of appearance. Yet, 

even these do not factor temporal and spectral effects like phosphorescence and fluorescence. 

Ultimately, mathematical intractability precludes consideration of many complex but fortunately rare 

phenomena. In this sense, the BRDF is the principal unique property of materials in computer vision. 
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The BRDF, along with albedo and geometry are sufficient to describe most non-translucent and non-

radiant scenes - and the vast majority of planetary environments. Even many types of subsurface 

phenomena in the domain of the BSSRDF can be approximated to high fidelity as a BRDF and first order 

Taylor expansions [Jensen, et al. 2001]. Knowledge of environmental BRDFs is crucial to understanding 

and exploitation of appearance, as well as probabilistic reasoning about the effectiveness of such 

computer vision algorithms.  

 

 

Figure 9. Role of the BRDF in the Geometric Appearance Model. The BRDF is a material-specific mapping of reflected light 
based on the direction of incoming and outgoing rays.  

 
While the characterization, measurement and utilization of BRDFs has mostly been the realm of 

computer graphics researchers, the knowledge and approach to material analysis has profound 

significance for field mapping and imaging. In a classic example, stereo vision algorithms rely on 

establishing correspondences in images taken from differing viewpoints using similarity criteria. Such 

criteria are confounded by specularities, which are drastic changes in scene intensity dependent on view 

point. Thus, intensity features are only strictly valid for Lambertian surfaces unless knowledge of 

material properties and scene illumination are available [Wohler, et al. 2008]. Non-Lambertian 

deviations are an ongoing problem in planetary mapping and discussed in the work of [Nefian, et al. 

2009], who have used stereo in the form of long baseline Lunar orbital imagery. While the moon 

appears matte and uniform, it is covered by a layer of regolith - a type of pulverized rocky dust – which 

acts as an amalgam of tiny mirrors exhibiting strong backscattering [Hapke 1993; 1998]. Shape -from-

Shading (SFS) is another class of vision algorithms strongly affected by material reflectance. SFS, which 

infers depth and surface normal from intensity, is explored in this thesis for reconstruction. However, 
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classic SFS algorithms must assume both known BRDF and albedo values a priori for accurate 

reconstruction.  

It is suspected that diffuse materials dominate many planetary and underground environments. Few 

people would describe the lunar terrain or a lava tube as “shiny.” This fact makes these domains of 

prime interest for utilizing physics-based imaging techniques that may not be applicable for field robots 

in general environments. However, few materials are perfectly Lambertian and most underground 

materials are an amalgam of rocks, minerals and dust, all with unique reflectances – some, like silica, are 

known to be quite specular in the micro-scale. Some diffuse objects, like the moon, are markedly non-

Lambertian [Oren, et al. 94; 95]. It is principally useful to survey the types of materials that may be 

commonly encountered in a domain and to determine the degree to which these materials can be 

represented as Lambertian or other simple, invertible BRDFs. Accurate representation with invertible, 

analytical BRDFs is the primary driver of vision algorithm performance, regardless of whether a material 

is qualitatively diffuse.  

While there are many existing databases of experimentally-derived BRDFs, covering a gamut of 

materials [MERL: Matusik, et al. 2003] [CUReT: Dana, et al. 1999], there has been curious little interest 

in the vision community for examining planetary materials in this manner. This work extends the body of 

known BRDFs through experimental measurement of commonly encountered planetary materials. 

These results are used to quantify the optical properties of domain statistically, delineate different 

constituent environments within the domain, and to reason about the targeting of vision-based 

enhancements. Furthermore, material appearances captured in this experiment will also be used in a 

number of novel detection and rendering techniques discussed later.  

5.1.1 Introduction to BRDFs 

The BRDF,  ,r i of   , is simply the ratio of light energy for all possible combinations of incidence and 

emergence, as seen in equation (5.1), 

  
 

 

 

 
,

cos

r o r o

r i o

i i i i

dL dL
f

dE L d

 
 

   
   (5.1) 

where  ,i i i   ,  ,o o o    are incoming and outgoing rays relative to the surface normal and 

their spherical coordinate parameterizations, L is the radiance and E is the radiance. Thus, the BRDF is 

a continuous, differential quantity.   
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Exact analytic forms for the BRDF of most materials do not exist, however several analytic BRDFs are 

grounded in physical models of radiant transfer. These tend to approximate common materials well but 

are mathematically complex. Physical BRDFs are required to obey several constraints: Positivity, 

Helmholtz reciprocity and Conservation of Energy. As a ratio of radiances, the BRDF must always be 

positive or zero valued.  

  , 0    ,r i o i of       (5.2) 

Helmholtz reciprocity describes the symmetric nature of light by equating the scene radiances when 

transposing incoming and outgoing (view) light distributions. A gross simplification in layman’s terms is 

“if you can see me, I can see you.” 

 ( , ) ( , )     ,r i o r o i i of f        (5.3) 

The conservation of energy simply states that the reflected radiation (not including self -radiance) cannot 

be greater than the irradiance. Though objects may be self-radiant, the BRDF encodes only the 

interaction of reflected light. This is integrated over the hemispheres of incidence and emergence.  

  , cos 1    r i o o o if d    


   (5.4) 

An additional property of surface isotropy is assumed (and required) in this work, as the sensor can only 

detect 3 degrees of freedom. This states that if the material is rotated azimuthally, there is no 

perceptive change. 

 
   
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, , , , , ,     

, ,

r i i o o r i i o of f         

   

  

 
 (5.5) 

Other types of non-physical, analytic BRDFs are typically fast to compute and used in graphics where 

they produce satisfactory but approximate results for simple materials. This thesis is primarily interested 

in analytic, physical BRDFs introduced above, but does not enforce the requirements in 

experimentation.  

Common models for BRDFs usually describe some form of diffuse reflection (view-independent), 

specular reflection (view-dependent highlights) or an additive combination of both. Linear separability is 

sometimes called Phong reflectance (distinct from the Phong BRDF discussed later). 
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      , , ,r i o d d i o s s i of f f          (5.6) 

where ,d s  are the diffuse and specular albedos – wavelength dependent, scalar reflectivity values, 

which give rise to color18. Albedos are often written as part of the BRDF, and must be fractional values to 

obey energy conservation.  ,d i of   and  ,s i of    are diffuse and specular BRDFs, which 

individually satisfy the rules of physical BRDFs, if the total BRDF  ,r i of   is itself physical. 

5.1.2 Methodology for Gonioreflectometry 

Material BRDFs can be measured directly using a process called gonioreflectometry. Gonioreflectometry 

simply presents a methodical approach to sampling reflectance values across the hemisphere of lighting 

and view angles. A gonioreflectometer, in principle, requires no more than a light source, detector, 

sample material and a way to position these components. A reflectance ratio is collected along each of 

the four degrees of freedom (4-DOF) corresponding to the four dimensions of the BRDF – two 

Illumination angles and two view angles (Figure 10). The reflectance data is then fitted to an analytic 

model or used (with interpolation) as a lookup table. This 4D sampling process is often quite slow, and 

more intelligent setups utilize automation and data parallelism with mirrors and cameras [Ward 1992; 

Marschner 1999] or reduce the dimensionality of the BRDF by assuming material isotropy [Marschner 

1999]. Figure 10 illustrates a traditional 3-DOF gonioreflectometer setup compared with the static 3-

DOF configuration, utilizing sparse data fitting developed for this thesis. This section will discuss 

motivations and justifications in this particular design.   

 

 

Figure 10. 3-DOF Gonioreflectometer Configurations. A traditional actuated setup where a single light source can move 

about the hemisphere of ray directions, but the detector is constrained to an arc with static azimuth (left).  A redundant static 

                                                                 
18

 when observed with tristimulus detectors like the RGB fi lters of cameras or the cones of the human eye  
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setup developed in this work which utilizes multiple sources and detectors in the hemisphere; however, the cameras are co-
planar (right).    

 

5.1.2.1 Design 

This work eschews the meticulous actuation of angular radiometry presented in prior work for a static, 

multi-camera based approach. An asymmetric but evenly distributed constellation of identical light 

sources and cameras instead capture the hemisphere of reflectance data from a centrally positioned, 

immobile sample. The sensors and sources are mounted in a “cube” configuration on a load-bearing 

aluminum frame. The major components are now described: 

 

Figure 11. Photo of cube gonioreflectometer illustrating major components: fixed lights, cameras, test sample and LID AR for 
self-calibration.  

Structure 
Structural support for components is provided by a six foot cube aluminum frame, consisting of 80-20™ 

rails Figure 11. Attachment points are located on vertical side bars and horizontal bars across the top. 

One corner of the cube is utilized for mounting triangular supports which provide rigidity against 

twisting; components are therefore not located in this corner. The sample target (shown in Figure 11) is 

positioned at the center-bottom of the cube, elevated about a foot from the ground plane. The sample 

tray is located on movable rails to enable fine tune adjustment and shifting of the sample for non-

standard views.      
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Errant light, interreflections and external illumination is a major concern for sensitive measurement. 

Consequently, several steps are taken to mitigate these effects. Firstly, all metals (such as aluminum 

supports) are covered in matte black gaffer tape to reduce reflections when possible. The faces of the 

cube are draped with cotton blackout cloth to block external light (the lab is darkened prior to data 

acquisition, but secondary sources like monitors and electronic status lights remain). Lastly, sensors are 

either originally black or painted with a matte black spray. Optical glass, which cannot be covered for 

obvious reasons, from lensing is the only significant source of errant reflection in this setup.     

 

 

Figure 12. CAD model of cube frame with ideal light source positions (left). Plot of incident light rays from source positions 
distributed approximately uniform across the possible range of elevations (right).  

 
Light Sources 
Custom clusters of three tightly packed “super bright” 8mm LEDs are utilized as light sources ( Figure 13 - 

center). Each LED draws 200mW of power (3.3V at 60mA) and radiates 11 lumens (a total of 33lm per 

cluster source) - about the brightness of a flashlight. Emitted light is a “cool white” color temperature  of 

5250K. Each LED is hemispherically diffused such that radiation is approximately isotropic; however the 

backplane is mounted to a swivel mount for fine tune adjustment. The entire cluster subtends an 

angular diameter of about 1 degree (fluctuating with distance).   

A hemisphere of illumination is provided by 24 clusters, separated into “strings” of lights along the 

periphery of the cube. Vertical bars at the corners and midpoint of each face (and two on the top face) 

provide an equi-azimuthal distribution of strings. Lights are positioned such that the total distribution of 

incident light about the possible 90 degrees of elevation (Figure 12 - right) is almost uniform (when 

considering all lights).  
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Detectors 
Three Canon EOS Rebel XS™ digital SLRs are utilized as the primary light detectors. These are 10 

megapixel, 1.6x crop factor (22mm CCD) consumer cameras. Standard EFS 18-55mm lenses are 

configured at the 55mm, F/5.6 aperture setting. The cameras are mounted at 30, 60, and 90 degree 

elevations. A single Sick LMS-200 LIDAR, with rotating actuation to enable volumetric scanning, is 

mounted overhead for self-calibration of the sample location. It is additionally used for determination of 

macroscopic surface normals in non-planar samples and terrains.          

 

 

Figure 13. Detailed view of gonioreflectometer components. (Left) digital relays toggle power to light sources, (middle)  each 
illumination source consists of a tight cluster of 3 LEDs each with their own hemispherical diffusers and (right) SLR camera 

and LIDAR mount positions at the top of the frame.  

Electronics 
Light sources are controlled from a PC via a USB digital I/O board. The board toggles a bank of relays 

which are able to drive the necessary higher operating currents (Figure 13 - left). The LIDAR scanner and 

actuating motor are driven over RS-232 serial. Lastly, data acquisition from the cameras also occurs over 

a USB connection. The entire setup is powered by two supplies at 5V and 24V.  

Software 
Control for the gonioreflectometer is entirely from within Matlab™ with C++ modules where necessary. 

Interface to the cameras is provided by the Canon SDK.    

5.1.2.2 Discussion 

There are several motivations for utilizing the described setup. Economy is perhaps the prevailing 

benefit; the cube frame is repurposed from a sensor characterization platform. All new components are 

off-the-shelf and readily available. While commercial spherical gantries may cost upwards of $130,000 

[stanford, Cammarano], this gonioreflectometer was developed for $2,000. Secondly, static sensors and 

light sources greatly reduce device complexity. Construction and automation were simple as there are 
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no moving parts; and it was physically assembled in two weeks by a single person. This design was easily 

scaled to sizable proportions (2 meter cube) enabling larger-than-normal samples and parallel data 

acquisition. Lastly, the cube-like nature, while inefficient for gathering spherical data, is ideal for 

mounting additional sensors and secondary function as a solar simulator for artificial terrains (the use of 

which is presented later). 

The cube gonioreflectometer does have several drawbacks. Static sensors present angular sparsity in 

measurement, particularly in view directions where each camera produces only one independent view 

point. Tiling the hemisphere with cameras would be prohibitively expensive, so only a single co-linear 

ring of cameras are utilized. These cameras share a relative azimuth but have differing elevations, giving 

the sensor three true degrees of freedom. Overall view sparsity is mitigated to some extent by utilizing 

large samples and the conical nature of measurement from cameras. This approach requires large, flat 

and pure samples which are hard to obtain for many materials. Consequently, powdered samples, whi ch 

can be manipulated in a flat tray, are utilized when possible. This does change the reflective nature of 

the material somewhat; however, many of these materials are found naturally in particulate form in the 

domain. Ultimately a data fitting approach is utilized instead of a reflectance lookup table. This approach 

compliments relative data sparsity and to reduces noise.  

The experimental setup explored here does not replace traditional gonioreflectometers, as the 

underlying purpose (and acceptable quality) of the data utilized in this thesis are different. This 

approach, in fact supplements traditional gantry methods in field simulation and experimentation. It is a 

cheap, fast, and low data burden sensor that enables commodity radiometry with oversize samples. 

Notably, some materials analyzed in this work have been spectroscopically analyzed with precision 

instrumentation - this includes JSC-1A and likely others [Cord, et al 2003; Johnson, et al 2008; Mustard, 

et al. 1989]. In a strict theoretical sense, it is possible to derive or infer visible-spectrum reflectance 

models from this existing data. However, the purpose of prior experimentation is materials science not 

robotic perception. Resulting analysis neither considers fitting for common perceptual BRDFs which can 

be inverted for computer vision, nor aggregate appearance as measured by vision sensors.    

The application intent of this thesis is to utilize robots with commodity RGB cameras in the visible 

spectrum. These cameras have peculiars of lensing, CCD circuitry, radiometric curves, and discrete 

spectral sensing. There is no better validation of this than imaging these materials with those very 

cameras in a controlled setting.   



 
 

74 
 

5.1.2.3 Calibration  

Calibration is required to reduce errors and increase certainty in the data. It is simply a systematic 

approach to recovering unknown parameters necessary for radiometry: geometry, camera response, 

and radiative transfer. The procedure for this gonioreflectometer is particularly involved, necessitating 

three interconnected optimizations. This stems from the rectangular nature of the frame, which 

enforces radially varying mounting distances for the cameras and light sources. In fact, an additional 

novel calibration for incident irradiance is required as compared to traditional setups.  

Geometric Calibration 
The “as-built” geometry of the components requires great care in calibration, particularly as compared 

to a spherical gantry, where components are favorably affixed to an arm of constant radius. These 

positional and directional uncertainties introduce additional sources of vector measurement error not 

present in spherical configurations. In lieu of a traditional photometric approach based on optimizing 

camera reprojection error in visible sources, a direct measurement of positions is performed utilizing a 

Faro Focus3D survey LIDAR. This LIDAR has 1mm accuracy and sufficient angular resolution to identify 

the components in the resulting point cloud [Wong, et al. 2011]. As such, the accuracy of this direct 

method is likely an order of magnitude greater than any camera based approach. The major source of 

error in geometric calibration are primarily the uncertainty between detection of a component’s 

position as the centroid of a discrete point “blob” and the true mounting position. Human validation is 

used to minimize the possibility of errant matches.     

 

Figure 14. Geometric calibration utilizing an “as-built” survey scanner (left) and model of cube showing planned (blue) and 

as-built (red) positions of the light sources (right).  
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Figure 14 illustrates the as-built positions of the light sources compared to the intended positions. The 

cube’s coordinate frame is given as x-right, y-back and z-up (from the entry point of the lab) with the 

origin at the top-center where the 90 degree camera is mounted.   

Camera Calibration 
Camera calibration – which involves separate radiometric and geometric components – is also required 

for each camera. Geometric camera calibration recovers the optical transfer function of each lens, which 

maps every pixel to a unique incoming light ray. This enables use of the sample as a region of 

measurements in contrast to a single mean direction from the target centroid to the camera optical 

center. Calibrations are performed with the Matlab camera calibration toolbox [Bouguet 2001]. Lens 

field of view, focus and aperture are locked during and after calibration as they are unique to each 

camera position.  

Radiometric calibration recovers the response curve of the camera. This function is a mapping from pixel 

value to irradiance incident on the sensor - an effective inverse of the “gamma” function and other 

artifacts of analog-digital conversion. The function enables transformation from nonlinear units of pixel 

value - usually uint8 values - to linear (but relative) units in the range [0, ] . With additional knowledge 

of exposure settings such as aperture, shutter speed and gain (ISO) at the time of image capture, 

physical radiance units can be recovered. These are ultimately needed for accurate reflectance 

measurement. One mapping exists per color channel, therefore the total radiometric function is (RGB) 

vector valued.  

The radiometric curve is recovered by imaging a static scene multiple times while modulating shutter 

speed – a known linear quantity in image formation. Pixels in the same location across images are only 

different in exposure and form related cliques. If all observed pixel values sufficiently span the space of 

possibilities, a polynomial function can be fit to describe this relationship. This process is described in 

detail in [Debevec, et al. 1997].   

Radiative Compensation 
It is well known that radiant intensity of small sources falls off (light attenuation) over distance. 

Moreover, it cannot be assumed that all light sources are spectrally and radiatively identical due to 

uncertainty in manufacturing, wiring resistance and coating. A calibration procedure must be conducted 

to normalize the incident irradiance from each light source and camera combination. This calibration can 

only be accomplished after calibration of positions and camera responses.  
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Figure 15. Calibration of incident irradiance using an ideal Spectralon sample (left) and compensation for distance falloff 
from light source positions on cube frame (right). The sources are small enough that the incident light on the target does not 

deviate significantly from ideal.    

The approach to normalizing irradiance involves comparing data of a reference target to predicted ideal 

values and fitting a function from source and camera distance to measured intensity. The target used in 

calibration is made of Spectralon, which is 99% reflective and is assumed to be a perfect Lambertian 

reflector. An ideal point source is known to fall as the square of distance; however this assumption is 

rarely valid as even the smallest sources subtend a nontrivial area. Instead, a polynomial of the following 

form is fit: 
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 (5.7) 

where id  is the distance of the i-th source or view combination to the target and iS  is the irradiance 

compensation factor. The coefficients of the polynomial are found with least squares regression. This 

polynomial is used in lieu of direct lookup to prevent overfitting.  

In this calibration step, whitebalancing is also performed for each of the lightsources utilizing knowledge 

of the spectral response of the Spectralon. Whitebalancing simply finds scalars ˆ , ,r g bw w w w such 

that , , ,r i r g i g b i bw E w E w E     where ,i rE is the radiance in the red channel of the i th light source 

and so on.   
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5.1.2.4 Data Acquisition 

Data acquisition is performed by illuminating each of the 24 sources consecutively, one at a time, and 

capturing the sample with each camera (which can be parallelized). This means a total of 72 unique 

lighting and view combinations are captured. Multi-pixel acquisition of the target area from each 

camera boosts this to a total 1152 illumination-view combinations. Cameras take a bracket of LDR 

images at [0.5, 1, 2] seconds. HDR images are created in post process to reduce noise and expand the 

range of detectable reflectances (component LDR images are 256 bit TIFFs). Total acquisition takes 

about 10 minutes per sample. A human manually selects the extent of the sample in each of the three 

principal views as the sample may not completely cover the target area. Sixteen intersecting rays in the 

target area are produced and intensity data is averaged to those sample locations. Finally, raw pixel 

values are transformed to irradiance utilizing calibration constants and compensated for distance 

disparities in each of the sources. 

5.1.3 Data-Fitting Analytic BRDFs 

This section describes the BRDFs of interest and the approach to data-fitting. A computer graphics 

vector notation for radiant transfer is now introduced. These formulations utilize world space instead of 

surface-relative spherical coordinates, and more directly reflects the geometric nature of the 

gonioreflectometer and vision in general. It is possible to convert between these coordinate systems 

with simple vector math.  

 
Table 2. Static Parameters common across BRDFs 

Symbol Description 

ˆ,L L  
Light source (incoming) intensity and direction and 
normalized direction vectors, respectively  

N̂  Surface normal vector 

V̂  Viewing (outgoing) direction vector 

Ĥ  Half angle (between source and viewer) vector 

 

Common parameters across all BRDFs are listed in Table 2; these are integral in the calculation of BRDFs 

but do not distinguish between them. These values are considered static in optimization and are given 

by virtue of calibrated measurement in the gonioreflectometer. Each parameter is a geometric vector 

with normalized (unit magnitude, x̂ ) form, while only the unnormalized form ( x ) of the L vector is 

significant. These vectors are unique for each scene point.  
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The light source direction ( ˆ,L L ) is a vector from each scene point to the center of the illuminant 

(considered to be an ideal point source). The unnormalized light vector measures both the direction and 

source intensity, 
sI , in lumens. This is distinct from prior use of the illumination vector in context of 

gonioreflectometer calibration, which measures a distance. In some related work, only the normalized 

vector is used and there is a separate scalar for source intensity is utilized; these forms are semantically 

equivalent ( ˆ
sL L I  ). N̂  is the surface normal vector. As every sample material is a flat surface, this 

is simply the vector <0,0,1>. V̂  is the view (also known as eye) vector from each scene point to a 

particular cameras optical center. Finally, Ĥ  is the half angle vector which bisects the view and source 

direction (
ˆ ˆˆ L V

L V
H 


 ). This is utilized to determine the deviation from the ideal mirror reflection 

direction. 

The radiance in view direction (V̂ ), from a linear combination of infinitesimally small point sources is 

given by the modified rendering equation of section 2.3. This equation, rewritten with the above 

graphics terminology becomes: 

     ˆ ˆ ˆ ˆ ˆ ˆ, ,o r i i

i

L V f V N L N L I   (5.8) 

This form is of particular interest due to simplicity in model fitting and rendering – in which it is used 

heavily in this thesis. Notice that it is a product of the BRDF ( rf ) and a cosine projected irradiance from 

each source,  ˆ ˆ ˆN L I N L   . This term, called Lambert’s law, is typically written as part of the BRDF 

for completeness in graphics literature.  
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Figure 16. Canonical illustrations of the five BRDFs analyzed: (left to right) Lambertian, Oren-Nayar, Phong, Cook-Torrance-
Sparrow and Hapke. They are rendered on the Eros  model  with straight on (top row) and glancing (bottom row) illuminant 
di rections.  

 

Five analytical BRDFs are utilized in fitting reflectance data. In ascending order of number of fitting 

parameters, they are: (1) Lambertian, an ideal diffuse model; (2) Oren-Nayar, a rough microfacet diffuse 

model; (3) Phong, an empirical smooth specular model; (4) Cook-Torrance-Sparrow, for smooth specular 

microfacet reflections, and (5) the Hapke model for backscattering materials. Table 3 summarizes these 

models and their canonical appearances are illustrated in Figure 16. Descriptively, Lambertian and Oren-

Nayer materials appear matte and similar when viewed from different angles, while the other Phong, 

Torrance and Hapke Models exhibit a variety of “shininess” effects in certain key directions.  

 
Table 3. Analytical BRDFs utilized in Reflectance Analysis 

BRDF Description # Variables 

Lambertian Ideal diffuse 1 

Oren-Nayar Rough, microfacet, diffuse 2 

Phong Smooth specular 3 

Cook-Torrance-Sparrow Smooth, microfacet specular 4 

Hapke/Lommel-Seeliger Multiple scatter, diffuse 5 

 

These BRDFs were selected such that increasing dimensionality of parameters coincides with an 

increasing capability of representing complex phenomena. However, most models advantageously 

reduce to Lambertian with appropriate zeroes. Thus, materials that are an ideal subset of two or more 

models should produce equivalent responses in related BRDFs. Though this is not always strictly true in 

slope climbing optimization due to selection of the fitness function and input noise, the degree of 

relatedness can be easily surmised from empirical data. This fact can be exploited to ensure a “simplest 
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explanation” coincident with the principle of Occam’s razor. As this thesis concerns mostly diffuse 

materials and the representation of appearance as Lambertian, this reducibility is of key importance in 

analysis.  

Some common analytic BRDFs are not considered due to scope and applicability. The Dirac mirror 

function (a perfectly specular reflectance) is impractical to fit - only a single view direction produces a 

response - and virtually nonexistent in the domain of interest. Anisotropic models like Ashikhmin-Shirley 

[Ashikhmin, et al. 2000] and Ward [Ward 1992] cannot be tested as there is insufficient sampling of 

viewpoints. This is an artifact of the repurposed gonioreflectometry setup presented this work. Cameras 

are mounted in a numerically-coplanar ring of elevation angles and are only capable of sampling three of 

the four dimensions in unconstrained surface reflectance. Reflectance data collected this way can only 

discriminate BRDFs modulo rotational (azimuthal) uncertainty. The complexity offered by this extra 

degree of freedom explains mostly “brushed metallic” phenomena due to a bias in banding or 

orientation of surface grains in a material. Fortunately, these are rarely encountered in the domain of 

interest. The vast majority of materials – particularly in planetary settings – are isotropic.   

Several BRDFs are modified from their original forms utilizing common approximations for complex 

terms, principally to facilitate data fitting. These modifications are known to violate strict radiosity in 

some cases. Four of the models presented here are based on the physical principles of geometric optics, 

with the Oren-Nayar and Torrance models utilizing approximations. The fifth – Phong reflectance – is 

strictly empirical in nature. While this thesis strives to identify and utilize physics-based explanations of 

appearance, strict, energy-conserving radiative transfer is not a primary purpose for this analysis. 

Physical BRDFs of materials can be acquired with greater accuracy and density using any of the 

dedicated gonioreflectometry setups described in prior work.  

The ease of use, degree of fit, applicability to computer vision algorithms as well as physical plausibility 

of BRDFs are all equally considered here. The Phong model, for example, is often a good approximation 

that has the mathematical advantages of simplicity. Consequently, a large collection of existing 

computer vision algorithms operate on Phong-type materials [Vogel, et al. 2009]19. The idea is that this 

work can determine the degree to which a Phong - or other - assumption can explain the appearance of 

planetary materials, enabling use of these techniques.    

                                                                 
19

 Phong reflection has also been utilized successfully in solving physically-based radiative transfer anomalies on 

the NASA Pioneer spacecraft  [Francisco, et al. 2011]. 
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The following section overviews these BRDFs, their unique parameters, and implementation specifics in 

the context of this thesis. The reader is encouraged to review the primary sources for further detail 

regarding derivations and physical explanations. The terminology introduced here is mostly adapted 

from these sources, with some minor modifications to enhance clarify and consistency between models.  

5.1.3.1 Lambertian 

 

Parameter Description Range 

d  Diffuse albedo [0,1]  

 

The Lambertian BRDF is the simplest model and encodes a perfectly diffuse reflectance. It consists of a 

constant scalar albedo, 
d , and Lambert’s law.  

  ˆ( )Lambertian d df N L    (5.9) 

Most notably lambertian materials do not depend on viewing angle – they appear the same from any 

direction unique only to a combination of surface normal and source vectors. This effect is caused by 

subsurface body interactions, which scatter light isotropically, and gives rise to the intrinsic color of the 

material [zickler SUV paper]. Lambertian materials are of primary importance in this work as they enable 

a vast collection of computer vision techniques.  

The albedo is the only fitting parameter for this BRDF. It is noted that this function is often written with 

a 1
  normalizer to account for conservation of energy across the hemisphere (assuming unitary radiance 

from the light source). However, the true radiance of the light source and the metric units of the 

detector (camera) are not known. Only relative comparisons can be made with a reference material that 

is assumed to be perfectly reflecting. This and other scalar normalizations are therefore factored into a 

preliminary data transformation before optimization. These normalizers are thus omitted for brevity in 

further BRDF discussion such that albedos are scaled in the interval [0,1]. 

5.1.3.2 Oren Nayar 
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Parameter Description Range 

d  Diffuse albedo [0,1]  

  
Roughness factor (standard deviation of 

microfacet angles) in radians 
[0, ]

2


 

 

The Oren-Nayar model presented in [Oren, et al. 1993] is a generalization of Lambertian reflectance for 

rough surfaces. Surfaces are assumed to be collections of randomly oriented microfacets which are 

paired in symmetric v-shaped cavities. While each facet is too small to be individually considered, the 

macroscopic distribution (and its radiance transfer) is estimable and assumed to be a zero-mean 

Gaussian. The facets are assumed to be much larger than the wavelength of light, such that radiosity can 

be analyzed with the rules of geometric optics. The projected radiance of an ideal lambertian facet can 

then be calculated. 

 

Figure 17. Microfacet Surface model utilized in Oren Nayar and Torrance BRDF models. Surfaces are randomly oriented 

collections  of microscopic facets arranged in symmetric v-shaped cavi ties (left). Light reflecting from the source to the viewer is 
attenuated by the surface geometry by shadowing, where the source is blocked (middle) and masking, where the viewer is 

blocked (right).  

 

This radiance is attenuated by self shadowing and light masking – summarized by a fractional product 

known as the geometric attenuation factor (GAF) – and increased by additive inter-reflections in each 

cavity (see definition of Torrance model in the following section for more information). The contribution 

of each facet is finally integrated across all the normals according to the distribution to find the total 

radiance emitted from a scene patch. The final formula is a mixture of analytical approximation and 

numerical integration  as the resulting integral is not easily evaluated (5.10). The meanings of the 

individual components are not particularly intuitive.  



 
 

83 
 

      ˆ,Oren Nayar ddf N L            (5.10) 

where, 
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and angle aliases are given by,  

 

 

 

   

ˆ ˆ ˆ ˆacos( ),acos

ˆ ˆ ˆ ˆacos( ),acos

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

max V N L N

min V N L N

V N V N L N L N







   
 

   
 

     

 (5.11) 

In the original paper, the diffuse interreflection term (not shown above) is discarded as it contributes 

only minimally to the total radiance while drastically increasing complexity and decreasing quality of 

data fitting. It is omitted in the work presented here as well. While the vector calculations are complex, 

there are only two unique parameters to the model - the diffuse albedo ( s ) and the standard deviation 

( ) of the the microfacet angles. It is notable that when 0   (no slope deviations) the Oren-Nayar 

model reduces to the Lambertian model.  

5.1.3.3 Phong 
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Parameter Description Range 

d  Diffuse albedo [0,1]  

s  Specular albedo [0,1]  

  Specular hardness [0, ]  

 

While ideal specular reflection occurs at a single “spike” viewpoint, realistic materials often exhibit less 

jarring highlights. Phong reflection is a phenomenological model that approximates a smooth specular 

falloff at views near the mirror direction [Phong 1975]. Total radiance is a combination of diffuse and 

specular effects, where the diffuse component is the Lambertian model. The specular component is an 

exponent of the cosine relationship between the ideal reflection (R) and view directions (v). The degree 

of this exponent controls the “hardness” of the specular lobe. Small exponents describe broad, low-

gradient highlights while large exponents increasingly describe a mirror spike. The diffuse (
d ) and 

specular ( sp ) albedos along with the specular exponent ( ) comprise the fitting parameters for the 

Phong model. 

    ˆ ˆ( , , )d sPhong d sf N L R V


        (5.12) 

where,  

 ˆ ˆ2R N L N L  
 

is the reflection vector. An additional constraint is that the specular and diffuse albedos must sum to 

less than 1 ( 1d sP P  ) so that the material is not self-emitting; this is observed in optimization. This 

constraint alone is not sufficient to satisfy energy conservation and the model is known to “leak light”. 

However, the succinctness and linear form of the function is of great interest in model fitting and 

inverting for vision application.   

It is noted that in the original formulation, Phong suggests an ambient offset radiance term to account 

for interreflections. This term strongly violates energy conservation and it is not utilized in this work. The 

model reduces to lambertian with zero specular albedo.    

5.1.3.4 Cook-Torrance-Sparrow 
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Parameter Description Range 

d  Diffuse albedo [0,1]  

s  Specular albedo [0,1]  

r  Mean microfacet slope [0, ]  

0F  
Initial value of the Fresnel function at normal 

incidence, as used in Schlick’s Approximation 
[0,1]  

 

The Cook-Torrance-Sparrow model (also known as Cook-Torrance and Torrance-Sparrow) is a microfacet 

surface model on which the Oren-Nayar BRDF is based. However, each of the facets here is assumed to 

be a perfectly reflecting mirror. Thus, only mirrors oriented in the half-way direction contribute to the 

total radiance of the surface patch.  The BRDF is linearly separable into diffuse and specular terms much 

like the Phong model with the diffuse term being the Lambertian BRDF [cook torrance 1982]. The 

specular reflection is a physically-plausible combination of three factors: Fresnel reflectance ( F ), 

surface roughness ( D ) and geometric attenuation (G ).  

The Fresnel reflectance ( F ) describes an angular dependency between the incident illumination and the 

magnitude reflected from a surface. In grossly simplifying terms, this relationship states that the 

intensity of specular highlights from grazing angles is greater than those for normal incidents. Intuitively, 

this effect is governed by the indices of refraction for the typically air-material interface. In normal 

incidents, greater energy is transmitted through the body of the material, while in glancing incidents 

most energy is reflected. The Fresnel term is distinct from – and acts in opposition to - Lambert’s law 

which describes diminishing intensity from increasing areas of equivalent flux at glancing angles. As 

index of refraction is wavelength dependant, so is the Fresnel term; which leads to color shifting in 

specularities.  

The surface roughness term ( D ) controls the bandwidth of the specularity; it is a distribution of facet 

slopes that describes the percent of facets oriented in the mirror direction. Rough surfaces produce 

highly directional specularities, while smooth surfaces reflect broadly. Several possibilities for slope 

distributions are given in Cooks’s paper including an approximating asymmetric Gaussian and the 

physically plausible Beckman distribution, derived from microfacet theory.  

The geometric attenuation factor (G , also utilized Oren-Nayar) encodes the reduction of light reaching 

the viewer due to interactions with facet geometry. This factor is thus a fractional scalar relative to a 
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perfectly transmitting facet of the same geometry. Light is attenuated by two similar processes, 

shadowing and masking (Figure 17). Shadowing is the partial blocking of incoming light that would 

normally reach the surface due to an occluding facet, while masking is the blocking of outgoing light. The 

GAF can be succinctly represented as a minimum of two vector dot product tests for these conditions.   

The full Cook-Torrance-Sparrow BRDF is given in equation(5.13).  

 

   
   

 0
ˆ ˆ, , ,

ˆ ˆ ˆ ˆTorrance Sparrow s dd s

F D G
f Nr L N L

N V N
F

L
   

 
    

  
 (5.13) 

where,   
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F  is a Fresnel term approximation, D  is the Beckman Distribution for surface roughness, and G  is the 

Geometric Attenuation Factor. In this work, fitting the Torrance model comprises optimization over four 

parameters: diffuse albedo ( d ), specular albedo ( s ), root-mean-squared slope of the facets ( r ), and 

a fresnel term initial value ( 0F ). There is an additional constraint (similar to the Phong model) that
 

1d sP P  . 

This form of the Torrance model deviates from Cook’s paper in the formulation of the Fresnel term, 

which is replaced with a functional form widely used in graphics called Schlick’s Approximati on [Schlick 

1994]. Use of this approximation is two-fold. Firstly the original Fresnel equations are wavelength 

dependent; complex spectral functions of indices of refraction can neither be resolved by the 

experimental setup nor fit to empirical data with any certainty or reasonable values.  Secondly, the 

function distinguishes between polarized and unpolarized light, and the degree to which each comprises 

the total illumination. Polarization is likewise not detected by this setup. Schlick’s Approximation is 

wavelength invariant and polarization invariant (though, materials can consist of multiple responses in 
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the color spectrum, i.e. RGB values). It requires only a single parameter (
0F ) which is the initial value of 

the Fresnel function at unpolarized, normal incidence at the dominant wavelength. 
0F  can be calculated 

from a known index of refraction of the material, or estimated directly as done here. A table of Fresnel 

coefficients for common materials, interfaced with a vacuum, is reproduced from [Real-Time Rendering 

3rd Edition] for comparative purposes. This work assumes non-metallic Fresnel reflectance, meaning that 

that 
0F is constant across color channels.  

 
Table 4. Table of Common Fresnel Coefficients  

Insulator sRGB F0 Conductor sRGB F0  

Water [0.15, 0.15, 0.15] Gold [1.00, 0.86, 0.57] 

Glass [0.21, 0.21, 0.21] Silver [0.98, 0.97, 0.95] 

Plastic [0.24, 0.24, 0.24] Copper [0.98, 0.82, 0.76] 

Ruby [0.31, 0.31, 0.31] Iron [0.77, 0.78, 0.78] 

Diamond [0.45, 0.45, 0.45] Aluminum [0.96, 0.96, 0.97] 

*reproduced from Real-Time Rendering 3rd Edi tion 

 

The Beckman distribution is utilized as the surface roughness term. This distribution requires a single 

parameterr , the root-mean-squared slope of the facets; small values of r give a smooth surface with 

highly directional specularity, while large values give a broad specularity. 

The Torrance model reduces to Lambertian with zero specular albedo or if the mean slope parameter 

tends to infinity. The latter case is technically permissible, but highly unlikely in optimization.  

5.1.3.5 Hapke Lommel-Seeliger 

 

Parameter Description Range 

w  Single scattering albedo [0,1]  

b  Particle phase parameter 1 [0,1]  

c  
Particle phase parameter 2, the fraction of 

energy which is backscattering 
[0,1]  

0B  Magnitude of opposition surge [0,1]  

h  Width of opposition surge [0,1]  
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The Hapke model is used in remote sensing to explain the perceived brightness of regolith-covered 

planetary bodies. It primarily explains the opposition effect - a greater than predicted radiance when the 

viewer and source are nearly co-aligned. Phenomena explained by this model include the bright “halos” 

on the ground (heiligenschein) in Apollo lunar images where the sun is behind the camera and the limb 

effect of the moon. As such, this is an interesting BRDF for the planetary environments explored in this 

thesis. However, due to the large number of parameters, and questionable applicability at the 

macroscopic (robot-sized) scale, the Hapke model is notoriously difficult to invert [Liang, et al. 1996]. 

The principal physical explanation for the opposition effect is shadow hiding, where particles mask or 

shadow light paths except when the illuminant and viewer are colinear. This is not unlike the model 

assumed in the Oren Nayar BRDF. Output radiance is defined as a sum of single scattering (which can be 

forward or backscattering in contrast to Oren-Nayar) and isotropic (equally in all directions) multiple 

scattering of light rays in the body of the material in addition to a direct component. The magnitude of 

single scattering is modulated by the opposition surge.   

The Hapke model utilized here is given as: 
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where angle and foreshortening aliases are given as:  
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An important alias utilized here is g , which defines the phase angle - the interior angle between the 

view and source directions. The principal components are: ( )B g ,
 
the shadow-hiding opposition effect; 

( )P g , the Henyey-Greenstein particle phase function which describes the angular distribution of single 

scattering, and  H x , the Chandrasekhar function for isotropic multiple scattering.  The final radiance 

is modulated by
 04

w

  
 , the Lommel-Seeliger coefficient, which determines the magnitude of 

scattering when the surface roughness is much larger than the wavelength of light.  

The classical Hapke model comprises 6 unique parameters, known as the Hapke parameters. The 

parameter w  is the single scattering albedo: the albedo of small particles which interact with the light. 

This is distinct from the bulk albedo utilized in prior BRDFs and a particulate material will take on 

different values for each. Two particle phase parameters, b and c , are material properties which are 

first and second order coefficients of the Legendre polynomial approximation to the nature of 

scattering. Qualitatively, b determines the width of the scattering lobe (large b  is narrow), and c  is a 

fraction determining whether scattering is primarily forward ( 0.5c  ) or backward ( 0.5c  ). 0B is the 

magnitude of the opposition effect, which is typically near 1 for most regolith [Pugacheva, et al. 2005]. 

The density, porosity and compaction of the media is described by h , which modulates the angular 

broadness of the opposition effect [Helfenstein, et al . 1987]. Finally, a parameter   measures the 

macroscopic roughness of microfacets in the terrain, akin to those in Oren-Nayar or Torrance. The 

original formulation of the Hapke model enabled use of a custom BRDF with input   to further 

modulate the radiance based on macroscopic effects. This parameter is not utilized in this work as it 

assumes knowledge of the intrinsic BRDF (and further assumption of microfacets) of the material which 

is a self-defeating exercise. Instead, a macroscopic Lambertian BRDF is assumed which does not utilize 

  and hence has no effect in optimization.  

This model does not reduce readily to the Lambertian model. Furthermore, it is well known that when 

an inaccurate Hapke model is used for inversion, the retrieved parameters may have no physical 

analogues [Shepard, et al. 2007]. For example, determination of the asymmetry parameter from 

measurements is ill conditioned [Liang, et al. 1996]. Thus, steps must be taken in optimization to 

physically constrain the space of output variables. Here, estimates of the albedo from a Lambertian 

optimization are used as strict bounds (in the interval (66% to 133%) for the single scattering albedo. 
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Furthermore, the height of the opposition effect 
0B  is regularized to be near 1 as estimated in 

prevailing literature.   

5.1.4 Experimental Results for Materials  

This section presents BRDF fitting results for several materials of interest in planetary and subterranean 

domains as well as arguments for the significance of  these materials. A total of nine materials were 

analyzed: two reference materials, Spectralon™ and matte paint; two materials from a planetary (lunar) 

environment, JSC-1A regolith simulant and CMU-1 simulant; and five materials from terrestrial 

underground environments, coal dust, limestone dust, spray concrete (gunite), granite, and black 

sandstone. Furthermore, the macroscopic BRDF of CMU-1 covered lunar terrain (featuring rock-sized 

features with surface roughness measured with a LIDAR scanner) was recovered, but those results are 

presented in a future section.  

The five analytical BRDFs presented in the prior section are each fitted to the observed radiance from 

the camera sensor by minimizing squared error between model -predicted radiance and observed 

radiance. As individual color pixels are not truly independent (due to Bayering) and the camera exhibits 

moderate noise in low light, fitting is not performed for each channel individually. Instead, white 

balancing is performed on each image which is then transformed to XYZ tristimulus values. The Y 

channel (luminosity) is utilized as the measured radiance value. Color data is independently averaged 

across all measurements from the white balanced images and stored separately for rendering.   

 

 

Figure 18. Macbeth Chart (left) used for color calibration and estimated whitepoint for each light source (right).  

Optimization over input parameters is performed using a bounded simplex search with linear constraints 

in the form Ax c . This type of numerical optimization, while highly efficient, is fairly susceptible to 

being trapped in local minima. To prevent this, some hand tuning is utilized to maintain sensible results. 
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Estimated albedo from a much more robust Lambertian fitting is used as the initial albedo value for 

higher dimensional functions. Moreover, for the Hapke function, maximum bounds are calculated from 

the Lambertian albedo to prevent the function from numerical instability. 

Two independent metrics are used to determine the quality of fit and also the “best” BRDF for a 

material. The primary metric, root-mean-squared (RMS) error   is a derivative of the objective function 

used in optimization.  

    
21

RMS i ix E I
n

    (5.15) 

where 
iE is the observed radiance at sample i  and ( , , , )i i i iI f x n l v is the radiance predicted by the 

BRDF model utilizing parameters x and geometric vectors , ,n l v . A total of 1152 measurement samples 

consisting of 48 view angles and 24 source directions per view are utilized. The views are clustered 

about the 30, 60, and 90 degree principal elevations where each camera image produces 16 views (a 4x4 

grid) of the sample.  

Functions that minimize RMS error give the best reconstruction for a scene, but not necessarily the best 

explanation of the physics. For example, a noisy reading or an impurity (geometric and material) might 

result in a specular spike in an otherwise diffuse material. A purely numerical fit may select a Phong 

model for a dark material on the basis of a large perceived brightness at 0 phase angle that poorly 

explains the presence of this lobe in other non-mirror views. Therefore, a secondary metric, Pearson 

correlation is also generated to validate the fit as it is invariant to scale and also measures the 

smoothness of the results: 
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where ,E I  denote the mean of the observed and predicted radiance at each sample. Correlation 

values range from -1 to 1, where values near 1 indicate strong correlation. The selection of best BRDF 

explanation for the data is given using the following formula (5.17). The terms are scaled to give RMS 

error greater weight, but in general the two scores coincided strongly.  

 0.5RMSscore P    (5.17) 
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The RMS error and correlation coefficients used in scoring are detailed in fitting tables in the next 

sections. A third metric “% Error” (max error as a fraction of true value) is also included for reasons of 

human readability, though it does not always strictly coincide with RMS error.         

The transformation from numerical albedo (which is specific to the experimental setup) to true albedo is 

performed by comparing results to the reference reflectivity of Spectralon, which is given as 0.99.  

 
0.99

( )true raw

spectralon empirical

 
 

   (5.18) 

Thus, multiplying the raw parameters in the next section by 3.3 (found empirically) gives scaled, real-

world units. The next sections describe the BRDF fitting results of all the test materials and relevant 

background information.  

Best-fits of each of the five BRDF models is shown visually by rendering on a test model of Eros, a near-

earth asteroid. This model is physically relevant to the domain and possesses sufficient surface features 

to discriminate reflectance detail from a single view.  

5.1.4.1 CMU-1 Simulant 

CMU-1 is an optical lunar regolith simulant produced specially for this thesis. CMU1 was developed to be 

economical, expendable, and storable in laboratory environments lacking special ventilation. As such, it 

comprises only common inert and nonhazardous materials and can be easily mass produced (it is about 

1/100 the cost of JSC-1A). The intent of these experiments is strictly optical (i.e. mapping, shape from 

intensity), so CMU-1 approximates regolith appearance. The simulant is not designed with regard to any 

mechanical properties. Terrains covered with CMU-1 are described in detail in the later application 

sections.  
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Figure 19. (Left) Design of CMU-1 lunar regolith simulant. The mixture ratio of coal and limestone dust is found by color and 
albedo matching against a known target under ambient illumination. CMU-1 (smaller-right) is qualitatively very similar to the 

fine portion of JSC-1A (larger-right), a NASA developed simulant.  

 
CMU-1 is a mixture of coal and limestone in a 1.72:1 ratio. The constituents are pulverized such that 

80% of the material by volume passes a 75 micron sieve. This is comparable to the “fine” portion of JSC-

1A, a NASA developed simulant, in which 50% of the aggregate passes a 75 micron sieve. Both these 

materials are slightly hygroscopic, which contributes to low aerosol suspension and dispersion, despite 

fine granularity. The mixture ratio is the result of matching a 7% mean lunar (visible spectrum) Bond 

albedo [Wildey 1976; Russell 1916] given these two reflectively dichotomous materials. Consideration of 

the spectral composition of CMU-1 is beyond the scope of this text; however the aggregate tristimulus 

color (as perceived with CIE 2 standard observer) is very nearly the same as the mare regions regolith, 

with a slight red tinge. Figure 19 illustrates the process of color and albedo matching to create CMU-1 

and its qualitatively similar appearance to JSC-1A.   

 

 
Figure 20. CMU-1 BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    
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Indeed, gonioreflectometry results show that CMU-1 and JSC-1A have strong quantitative similarities 

reflectively and perceptually. CMU-1 is best explained by the Torrance-Sparrow BRDF, which is the 

microfacet mirror model, with an error of 8.91% and a correlation of 0.864. The assumption of 

microfacets has a clear grounding in reality, as the sample consists of dust particles. There is moderate 

noise in the radiance curves, which is a consequence of the high-ISO camera setting required to image 

materials of low albedo. However, the recovered parameters are reasonable: the 6% empirical bulk 

albedo is very nearly the 7% of lunar regolith.  

 

BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 13.3 0.295 0.796 d =0.022 

Oren-Nayar 13.4 0.295 0.791 
d =0.023,  =0.12 

Phong 12.8 0.294 0.821 
d =0.022, 

s =0.0027,  =28.5 

Torrance 8.91 0.162 0.864 d =0.019, s =0.012, r =1.54, 
0F =0.26 

Hapke 9.15 0.207 0.884 w =0.10, b =9.3e-5, c =0.93, 
0B =0.23, h =0.92 

 

The Torrance model also exhibits a statistically significant lower error than the other BRDFS. This error is 

about 50% lower than the Lambertian model, though only about 4.3% in terms of absolute error. Thus, 

CMU-1 is not particularly well represented as a diffuse material. However, in consideration of the 

intrinsic noise of the sensor and compared to Lambertian explanations of the other materials, it may be 

a sufficient approximation, particularly at non-glancing, non-mirror incident angles.  

The Hapke BRDF is also a close fit to the data, albeit with several peculiarities. It features a slightly 

greater error (25% RMS, significantly less than the other BRDFs) than the Torrance model, but an even 

stronger correlation (2% greater). This is a promising development for CMU-1 simulant, as it is well 

known that Lunar regolith can be explained by the Hapke model. However, there are questions about 

the soundness of the recovered parameters, given that the Hapke BRDF is a strongly underconstrained 

model for fitting. For example, the phase asymmetry parameter b  is very nearly zero. While this is 

technically possible in real materials, it is highly unlikely given prior evaluation of such lunar surface 

materials, which places a lower bound for this parameter around 0.05 [Aurelien Cord, 2003]. Likewise, 

the single scattering albedo w  is about 60% lower than the typical value for dark lunar terrain at 1.6.     
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5.1.4.2 Coal Dust 

Coal is a sedimentary rock formed by high temperature and compression of dead vegetation over 

hundreds of millions of years. Its primary consituent material is carbon and is perceptually a very dark 

substance. Coal is burned for heat energy and its use as a fossil fuel means mining is ubiquitous.  Mines 

occur in seams, which are geological layers of near-homogeneous material in the ground. As such, the 

exposed coal represents a large portion of the interior surface in underground mines. The optical and 

geometrical regularity of these artificial voids is of particular interest in this work for vision application 

prompting characterization. 

 

 
Figure 21. Coal Dust BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 

reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
This work characterizes a sample of 75 um, pulverized bituminous coal dust from the Pittsburgh seam. In 

addition to being easier to handle in this experimental setup, coal dust is pervasive in mines and a 

significant layer builds on walls as a result of active mining. Though pulverizing changes the surface 

reflectance properties of the material, it is also possible to infer the properties of the solid, particularly 

bituminous coal, as it is weakly coherent sediment.    
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BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 20.5 0.367 0.530 
d =0.0104 

Oren-Nayar 20.5 0.367 0.530 
d =0.0105,   =0.000277 

Phong 20.4 0.367 0.544 
d =0.0104, 

s =0.00037,  =23.4 

Torrance 13.7 0.248 0.665 d =0.0082, 
s =0.0077, r =1.43, 

0F =0.33 

Hapke 16.6 0.307 0.661 w =0.054, b =7.1e-5, c =0.82, 
0B =0.17, h =0.16 

 

Results show that the appearance of coal dust is best explained by the Torrance model with statistical 

significance. The data is quite noisy, the consequence of an extremely dark material; thus, the error is 

fairly large and the correlation only moderate for all BRDFs. Though, the recovered parameters are 

sensible and consistent with classical sources. The albedo of 3% is about half the classical 6% value for a 

solid piece of coal. This is not unreasonable considering the rough, particulate nature of the sample. The 

recovered Fresnel coefficient ( 0F ) of 0.331 places the material squarely in the insulator category, 

between ruby and diamond; a determination that also appears sound.    

Coal is not particularly well-explained by either the Lambertian, Oren-Nayar, or Phong reflectance 

models (7% greater error or 1.5x), which all parametrically reduced to Lambertian in optimization. Thus, 

unless an algorithm specifically handles Torrance-like specularity, a Lambertian assumption will suffice 

as well as the other three common models. The Hapke BRDF fares better (about 50% better fitting), but 

is still quite erroneous at glancing angles.     

5.1.4.3 Concrete Gunite 

Gunite (also known as shotcrete) is a form of spray concrete commonly used as a, structural stabilizer 

and coating for surfaces in many terrestrial voids. Concrete for gunite varies, but usually comprise 

cement, aggregate and reinforcing fibers. The mechanism of spraying produces a rough surface finish 

that is distinct from typical concrete texture. The sample is a solid slab of Gunite which was cut from the 

Bruceton Research coal mine in Pittsburgh. Most of the mined-out surfaces of the Bruceton mine consist 

of this material.    
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Figure 22. Gunite BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
The constituents of Gunite are diffuse materials, and the amalgam is more so as a result of the 

macroscopically rough surface. As such, the Hapke BRDF is, quite reasonably, the only model with 

adequate complexity to fully describe the complex reflectance processes at play. The material is strongly 

backscattering ( 0.98c  ) and the surface can be seen from the point of the source as a series of 

concavities which mitigate scattering in the forward direction. Both particle phase parameters are 

consistent with a rough, high density material [Sato, et al 2012]. The total opposition effect is muted and 

broad as expected. The Oren-Nayar model also fits the data well, though the microfacet assumption 

most likely underrepresents the amplitude of surface texture. The high estimated roughness value from 

this model further corroborates the assumptions of surface geometry.   

 

BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 14.3 0.302 0.781 d =0.046 

Oren-Nayar 10.1 0.241 0.891 d =0.075,  =0.85 

Phong 14.3 0.302 0.781 d =0.046, s =2.5e-8,  =26.1 

Torrance 14.5 0.274 0.788 d =0.044, s =0.012, r =3.34, 
0F =0.37 

Hapke 5.89 0.206 0.963 w =0.18, b =0.28, c =0.98, 
0B =0.065, h =0.15 

 

Overall, the error of the Hapke model is about 25% lower than Oren-Nayar and 50% lower than the 

others. The Lambertian, Phong and Torrance models are all basically equivalent in error and parameter 

values. A Lambertian BRDF does correlate moderately highly with the data, but the absolute sample 

error, which is modulated by the macroscopic displacement and self-shadowing of the surface, is quite 
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high. The corollary is that the Lambertian assumption clearly does not suffice for per-pixel vision 

approaches; however, it may be more appropriate in recovering trends aggregated over many surface 

cavities.     

5.1.4.4 Granite 

Granite is an abundant igneous rock that is widely distributed in the earth’s crust. It comprises many 

minerals such as quartz and feldspar that give a speckled look. Component and hence bulk colors vary 

broadly. Many natural caves and voids are granite, particularly where water has eroded softer rock 

between large slabs. The Granite sample analyzed is a salt and pepper type, but is perceptually gray. I t is 

slightly weathered, with a coarse, but uniform surface.   

 

 

Figure 23. Granite BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
The Granite sample was found to be Oren-Nayar in appearance, though it is only insignificantly non-

Lambertian along with the other reducible models. Noise levels in the data were low; however, there is 

a bias trend in fitting against any of the BRDFs that contributes to a medium-high absolute error. This 

error is believed to be the result of a slight, but nontrival, convexity of the sample. It is likely that given a 

more planar sample, the material can be classified as very strongly Lambertian, as correlation is very 

high. The Hapke model does not fit the data, indicating that there is little subsurface scattering. 
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BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 14.3 0.400 0.903 
d =0.084 

Oren-Nayar 14.1 0.395 0.908 
d =0.091,  =0.24 

Phong 14.3 0.398 0.889 
d =0.083, 

s =0.0191,  =18.3 

Torrance 14.3 0.400 0.903 d =0.084, 
s =8.2e-8, r =0.94, 

0F =0.56 

Hapke 20.1 0.572 0.816 w =0.61, b =0.99, c =0.078, 
0B =0.0074, h =0.91 

 

5.1.4.5 Gray Sandstone 

Sandstone is a soft sedimentary rock formed from silica (sand), calcium carbonate and other minerals. 

The appearance of sandstone varies widely and it may take on a gray, tan, pink and yellow color. Even 

combinations of these colors in the same sample are possible as the material typically exhibits an 

anisotropic banding as a result of sedimentation.  

 
Figure 24. Sandstone BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
The sample used for testing is a slab of gray sandstone collected at Walker’s Mill cave in Pennsylvania. 

The walls of this cave consist entirely of sandstone slabs which are homogeneous in appearance. The 

surface of the sample is coarse but uniform, and speckled with minute reflective crystals. Intrinsic 

anisotropic banding is perceptually undetectable; thus, it is appropriate to utilize the 3-DOF 

gonioreflectometer for complete characterization.  
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BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 11.5 0.248 0.784 
d =0.041 

Oren-Nayar 11.5 0.248 0.784 
d =0.041,  =1.8e-5 

Phong 10.2 0.244 0.837 
d =0.041, 

s =0.0090,  =25.4 

Torrance 7.82 0.160 0.893 d =0.036, 
s =0.010, r =0.90, 

0F =0.35 

Hapke 6.11 0.161 0.939 w =0.21, b =0.26, c =0.23, 
0B =0.13,  h =0.94 

 

Sandstone is optimally described by the Hapke model with very high correlation and low error which is 

near the threshold of sensor noise. In terms of physical properties ( , ,b c h ) explained by the model, it is a 

densely compacted (high h ), agglomerate of medium surface roughness (medium-low b and c ). Of the 

common BRDFs, it is also well explained by the Torrance model which has statistically insignificant RMS 

error and about 5% lower correlation in comparison. The surface is distinctively microfaceted and 

specular (this can be seen in the crystalline nature of the speckling).  

The metrics for the remaining BRDFs are all numerically similar: 50% greater RMS error than the Hapke 

model, though moderately low in absolute terms, and medium-high correlation. Like Gunite, sandstone 

is clearly not Lambertian, though the absolute error is low enough that it may be acceptable to make the 

assumption in many cases.  

5.1.4.6 JSC-1A Simulant 

JSC-1A is lunar regolith simulant for titanium-deficient mare (dark flat plains) regions. It is chemically 

similar to Apollo returned lunar regolith samples; the primary constituent is a basaltic ash with high 

glass content mined at the San Francisco volcano fields in Arizona [Ray, et al 2010]. Particle size 

distribution is also designed to mirror that of Apollo soil samples. The raw material is coarsely sieved 

and then comminuted in an impact mill to generate the appropriate sizes. As such, constituent particles 

are particularly jagged reflecting the meteoritic weathering of the moon. Grains range from 1um to a 

maximum of 1mm and an average size of approximately 81um [McKay, et al 1994].    

As a NASA developed simulant, JSC-1A (unlike many of the other materials documented here) has been 

comprehensively characterized; mechanically, chemically and photometrically. Spectroscopic analysis in 

particular, has been done with high rigor, utilizing dedicated instrumentation in highly controlled 

environments. Reflectance curves have been recovered across the spectrum of visible and invisible 

wavelengths. This work does not seek to reproduce these extensive results. Rather, a holistic, 
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perception centric approach is taken to augment prior work, which is deficient in this area. For example, 

BRDF results are either presented as wavelength-indexed lookup tables [Johnson, et al. 2008] or 

collections of optimized Hapke parameters [Helfenstein, et al. 1987; Cord, et al. 2003]. These 

formulations do not lend themselves to modern computer vision which requires linearly separable 

BRDFs, assumes albedo is a constant intrinsic property, and operates in a contrived RGB space.       

 

 
Figure 25. JSC-1A BRDF Fitting Comparison. Reflectance functions rendered on a test model (top)  and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
JSC-1A was produced to enable comprehensive and destructive scientific testing not possible with 

genuine lunar samples. However, JSC-1A is expensive, limited in availability, and no longer produced. 

The sample used for testing was loaned from Glenn Research Center. Though it was kept in a sealed 

container, prior use and replacement measures did not specifically mitigate moisture and other possible 

airborne contaminants.   

Experimentation shows that JSC-1A is similarly representable as both a Torrance and a Hapke material. 

Torrance fitting is lower in absolute error, while the Hapke model presents higher correlation with 

observed values. Overall noise is moderately low for the raw data. As a weakly cohering particulate, JSC-

1A reasonably satisfies both the microfacet Torrance and the multiple scattering Hapke assumptions. 
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BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 13.7 0.298 0.787 
d =0.021 

Oren-Nayar 13.7 0.298 0.790 
d =0.022,  =0.062 

Phong 13.3 0.297 0.810 
d =0.021, 

s =0.0022,  =27.9 

Torrance 8.63 0.159 0.872 d =0.018, 
s =0.010, r =1.49, 

0F =0.33 

Hapke 9.17 0.208 0.890 w =0.10, b =2.6e-5, c =0.87, 
0B =0.17, h =0.98 

 

However, as with the CMU-1 material, it is unlikely that recovered parameters in the Hapke model are 

physically valid. The particle phase parameter ( b ) is nearly singular here; while prior work argues c

should rarely exceed 0.5 for lunar type terrains [Helfenstein, et al. 1987]. The value of the single 

scattering albedo ( w ) is plausible, but the distribution of opposition effect ( h ) is much too broad and 

amplitude (
0B ) too muted. Thus, it is possible that the single and multiple scattering processes tied to 

w are sound, but there is insufficient angular sampling to estimate the opposition effect with any 

numerical stability. The Torrance model is a much more plausible explanation of the appearance, with 

physically reducible parameters within acceptable ranges.  

The other BRDFs are poor explanations for JSC-1A, with almost 100% greater error and 10% lower 

correlation. However, this difference is reduced somewhat by considering the low total error, and 

increased measurement noise caused by the material’s low absolute reflectivity. 

5.1.4.7 Limestone Dust 

Limestone is a light gray sedimentary rock consisting of calcium carbonates such as calcite and 

aragonite. It is formed primarily by the accumulation of marine skeletal fragments (bones and shells) on 

the sea floor. Limestone comprises 10% of all sedimentary rock on earth and is optically important in 

terrestrial underground environments due to its abundance. Most caves are limestone as it is easily 

eroded by hydraulic processes, due to its soluble nature. It’s also a common surface material in artificial 

voids where it is mined, and also due to its nonreactive properties.  
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Figure 26. Limestone BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 

reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
Limestone serves as a building block of many other materials, some which are explored in this work. 

Industrial uses are pervasive: in powdered form, agricultural lime is used to reduce the pH of soils, in the 

creation of concrete, as an explosion suppressant in coal mines, and even as an edible source of calcium. 

As a crushed aggregate, it is used structurally and as gravel. Lastly, blocks of limestone are utilized in 

building construction. A sample of pulverized limestone dust is characterized in this work.  

 

BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 11.4 0.201 0.945 d =0.22 

Oren-Nayar 11.4 0.201 0.945 d =0.22,  =0.0010 

Phong 11.1 0.191 0.934 d =0.21, s =0.047,  =12.9 

Torrance 11.5 0.201 0.945 d =0.22, s =0.002, r =1.5, 
0F =0.24 

Hapke 12.9 0.252 0.928 w =0.65, b =0.37, c =0.50, 
0B =0.22, h =1.2e-6 

 

Results show that limestone is almost certainly a Lambertian material. Though the Torrance model 

scored marginally highest, it and the other reducible BRDFs are statistically inseparable from the 

Lambertian model with more than 99% of the energy being diffuse. Correlation is high and error is low in 

this determination. The Hapke model is comparatively neither a fit to the data or the parameters as the 

compaction parameterh  is numerically zero.    
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5.1.4.8 Ochre Paint 

This sample is a yellow-orange colored matte paint used on the Gretag-Macbeth Colorchecker™ SG 

(semi-gloss), a color calibration target. This material is not found in the environments of interest, but 

serves as a contrast to the other materials characterized. Most of the planetary materials are matte 

shades of dark gray and there is great difficulty distinguishing them from known quantities. The unique 

off-white color and visible specular reflection demonstrate that the experimental setup is capable of 

detecting a variety of intrinsic BRDFs with fidelity.  

 

 
Figure 27. Ochre Paint BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 

reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue.    

 
The ochre semi-gloss paint is a moderately specular material and is described equally well by both the 

Phong and Torrance models, although the Phong BRDF has an insignificantly higher correlation with 

observed data. The Lambertian model is capable of describing the paint at non mirror angles (it is a 

linearly separable BRDF), with low error and high correlation. Given the relative sharpness of the 

specular lobe ( 18.6  ), which is equivalent to a small highlight, a Lambertian assumption would be 

valid in a simple illumination environment with overwhelming probability. 

 



 
 

105 
 

BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 10.3 0.216 0.889 
d =0.096 

Oren-Nayar 10.3 0.216 0.889 
d =0.096,  =0.0006 

Phong 6.80 0.192 0.942 
d =0.093, 

s =0.049,  =18.6 

Torrance 6.98 0.192 0.940 d =0.095, 
s =0.018, r =0.13, 

0F =0.041 

Hapke 13.5 0.330 0.804 w =0.31, b =0.17, c =0.94, 
0B =0.003, h =0.95 

 

5.1.4.9 Spectralon 

Spectralon™ is utilized for radiometric calibration of the experimental setup; it is the most diffuse 

material known. Its diffusive properties are the result of a fluoropolymer structure, which produces 

isotropic multiple subsurface reflection. The material is spectrally white and exhibits over 99% 

reflectivity, which makes it ideal as a calibration sample. The known diffusivity and reflectivity are 

exploited to recover two parameters. These parameters are (1) a scalar conversion factor from 

perceived pixel radiance to unit reflectivity values and (2) a calibration of the irradiance incident on the 

sample from each light source as a function of distance. The second measurement also compensates for 

manufacturing uncertainty in the radiance and errors due to the small areal nature of each source. The 

procedures for these calibrations are discussed in Section 5.1.2.3 (Calibration). 

   

 
Figure 28. Spectralon BRDF Fitting Comparison. Reflectance functions rendered on a test model (top) and Per-sample 
reprojection errors for each BRDF (bottom). Observed radiances in red are sorted by magnitude; predicted data is in blue. 
There is bias error for high-intensity measurements due to semi-saturation. This and other errors prompt regularization of 

calibration parameters, regardless of “known” sample values.    

 
Data from this reference sample is included here to illustrate typical measurement data and error 

sources on a known material. The sample is clearly Lambertian as expected, with the insignificantly 
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better Phong fit within 1% difference. This corresponds to expectation, but is likely the result of 

overfitting to noise. While correlation is necessarily high and overall noise minimal, sources of error are 

present and detectable in this characterization. These errors assumed for other samples and mitigated 

in a variety of ways. Discussion of this process occurs in the next section.    

 

BRDF % Error RMS Error Correlation Raw Parameter Values 

Lambertian 13.7 0.245 0.920 
d =0.31 

Oren-Nayar 13.7 0.245 0.920 
d =0.31,  =0.0002 

Phong 11.4 0.241 0.937 
d =0.30, 

s =0.024,  =6.33 

Torrance 12.0 0.239 0.932 
d =0.31, 

s =0.051, r =0.19,  
0F =0.14 

Hapke 18.2 0.349 0.865 w =0.77, b =1.4e-7, c =0.83, 
0B =8.3e-11, h =0.70 

 

5.1.4.10 Error and Accuracy 

The Spectralon data illuminates two possible physical sources of error. The first is saturated 

measurement of very bright or dark objects. Camera radiometric curves are not accurate near the pixel 

limits (0 and 255). Specifically, when RGB channels are combined to a single irradiance value, this may 

have the effect of magnifying noise instead of a reduction as intended. Utilizing a dead-band both 

reduces dynamic range and does not significantly address the problem of edge values. In classic HDR 

imaging, a probabilistic approach is taken where Gaussian weights are used to emphasize “well-

exposed” values in combining an exposure bracket. However, for particularly bright objects, near-

saturated measurements still dominate given a fixed number of exposures to consider. A well-exposed 

image may not exist for any given set of images in a bracket. It quickly becomes infeasible to take many 

more images – for example, in an exposure adjustment loop – for the entire range of intensities 

produced by the incident angles. Fortunately, Spectralon and coal were the only materials where 

saturation was a significant concern.  

The second source of error is due to non-planarity of the sample leading to misassumption of the 

surface normal and extreme modulation of perceived intensity from self-shadowing. The Spectralon 

used is macroscopically flat but worn; there are visible indentations on the surface (the material is quite 

soft). These indentations, as well as convex features on other samples, are shadowed by glancing 

sources. These glancing sources are also physically nearest to the sample, creating a complex 

relationship. While BRDFs are capable of addressing self-shadowing in a microfacet sense, these 
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assumptions break down with macroscopic deviations; those that approach the size of 1 measurement 

sample. These surface errors could explain the BRDF preference for a specular spike in fitting the 

Spectralon data.     

Manual inspection provides the best tool for dealing with data acquisition errors. Spectralon, a very 

bright object, was imaged with decreased exposure (increased shutter speed), while coal was imaged 

with increased ISO sensitivity (there is a maximum integration time allowable due to physical heating of 

the sources). However, raising the ISO, introduces additional measurement noise.     

The approach to mitigating systemic errors involves certainty of large numbers. Regularization of the 

distance polynomial in irradiance compensation prevents overfitting of saturated regions of the 

Spectralon sample in calibration. This is also the primary reason for noise in the well-exposed regions of 

the radiance curves despite Spectralon being an “ideal” material. Minimal self-shadowing is simply 

tolerated. Given the 1152 measurements amortized over 16 measurements by 72 images, any individual 

errors would have negligible effect on the total data. Particularly egregious cases, however, are simply 

removed from consideration. 

Analysis of the Spectralon data shows the overall intrinsic error of the gonioreflectometer to be 

approximately 5%, a tolerable value for the purposes of this work. This value does not include additional 

sample-specific errors that may result. These may include the cameras’ ISO-dependent, integration 

noise or physical errors such as inaccurate sample placement or airborne dust in the measurement 

volume. These other error sources are also manually detected and removed if possible, but it is 

necessary to accept some noise as unmitigable.     

5.1.5 Discussion 

A summary of perceptual measurements are given in Table 5. The planetary materials characterized 

ranged in diffuse albedo from a low of 3% for coal dust to a high of 68% for limestone dust (not including 

the reference materials). Typical terrestrial underground albedos are in the 10-20% range, while 

planetary regolith was much darker at 6%. Illumination-carrying robots are thus at a significant sensing 

disadvantage in planetary environments, given the same output power. With open, planar geometry 

precluding illumination by interreflection, it is prudent to leverage natural illumination for imaging - 

particularly sources that may be approximated by simple points (such as lunar sunlight).    
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Materials are overwhelmingly shades of gray, with slight red tinges in the regolith materials, coal and 

sandstone. This has little significance in reflectivity analysis, but may be useful for discriminating 

between soils and their bedrock.   

 
Table 5. Table of Observed Color and Albedo Values  

Material sR G B Albedo 

CMU-1 0.65 0.58 0.49 0.06 

JSC-1A 0.66 0.58 0.48 0.06 

Coal Dust 0.69 0.54 0.46 0.03 

Granite 0.61 0.60 0.51 0.25 

Gunite 0.64 0.60 0.48 0.14 

Limestone Dust 0.59 0.58 0.56 0.68 

Sandstone 0.67 0.59 0.45 0.13 

Ochre Paint 0.77 0.61 0.19 0.28 

Spectralon 0.58 0.58 0.57 0.99 

* Materials are sorted by planetary, underground and reference  

types. Colors  are given as normalized values on the unit sphere. 

 
Reflectively, three of the materials characterized were found to be definitively Lambertian: limestone, 

granite and the reference spectralon. Materials with less than 1% difference in score between the best 

fitting BRDF and the Lambertian explanation are given this designation. The next class of strongly 

Lambertian materials features less than a 5% difference; this category consists of only the reference 

ochre paint. The class of moderately Lambertian materials - those with less than a 50% score difference - 

include coal, concrete, and sandstone. Lastly, the class of slightly Lambertian materials have as much 

energy in the Lambertian component as not (<100% difference). This category includes the regolith 

simulants CMU-1 and JSC-1A. There are no materials in this study that can be classified as definitively 

non-Lambertian (>100%).   

In this classification, relative score differences are used for comparison. When the absolute error and 

instrinsic noise of the data is considered, most materials can be tolerably represented as Lambertian 

with less than 15% error and greater than 0.8 correlation. There are several important corollaries from 

this determination. Firstly, variegation (spottedness) is sufficiently approximable with a single physical 

albedo value for each material. Secondly, aggregate materials, regardless of composition can be 

represented by a single bulk BRDF with high accuracy, i.e. all fits have tolerable absolute error. In multi-

term BRDFs this means that the diffuse component is either Lambertian or the material is strictly Oren-
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Nayar. Oren-Nayar/Torrance hybrids, for example, are not significantly more expressive in this domain. 

Lastly, materials with purely specular BRDFS (zero diffuse albedo) do not exist.  

Of the materials that are only moderately Lambertian or less, three of them are particulates best 

explained by the Torrance model, while gunite and sandstone are Hapke materials. While the Hapke 

BRDF is physical model of dusty surfaces, it proves difficult to invert and fit for these experiments. The 

three Torrance dusts, coal, JSC-1A and CMU-1, are numerically a good fit for Hapke, but parametrically 

nonsensible. In fact, the Torrance model provides a better fit given the data, and is furthermore 

receptive to vision techniques. In materials that are indisputably Hapke (low error,  parametrically 

reasonable), gunite is also well-explained by Oren-Nayar and sandstone by Torrance-Sparrow. Thus, it 

can be argued that explicit consideration of the Hapke model, while providing a low-error fit for many 

materials, is unnecessary in fully describing the gamut of planetary materials.  

 

Figure 29. Rendering of Fitted Planetary and Reference Material BRDFs. Color, relative albedo, and reflectance functions are 
derived from experimental  data; brightness is enhanced for print and screen viewing.  

 
Considering only the four “traditional” graphics models: limestone, granite and Spectralon are 

Lambertian; the semi-gloss paint is Phong; coal, sandstone, JSC-1A, and CMU-1 are Torrance and 
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gunite is an Oren-Nayar material. As the paint is not a planetary material, just three BRDFs –

Lambertian, Oren-Nayar, and Torrance – are sufficient to span the reflective space of the domain.  

Rendering of these material BRDFs on the Eros asteroid model are shown in Figure 29. Rendering uses a 

single best-fit BRDF with optimized parameters, relative albedo and color estimates. Any detectable 

surface anisotropy, texture or variegation (i.e. banding of sandstone) are not utilized. Illumination is a 

single infinitely-far point source that is slightly tilted to the positive Cartesian quadrant from the camera 

center. Brightness has been enhanced for display of low-reflectivity materials.  Polar slice visualizations 

of the BRDFs for each material are illustrated in the Appendix: 7.4.1. 
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5.2 Experimental Environments and Distributions of Materials  

 

Figure 30. Typical Imagery from environments considered in characterization: (left) Bruceton Coal Mine, (center) macroscopic 
Lunar terrain and (right) Walker’s Mill sandstone cave.  

 
Surface appearance not only depends on the optical properties of materials, but also the frequency and 

macroscopic distributions of those materials. These distributions are functions of individual 

environments. Thus it is not sufficient to simply characterize common materials in order to understand 

appearance. The environments where they occur must be characterized for the manifestations of these 

materials. 

 

 

Figure 31. Approximate Prevalence of Surface Materials in Experimental Environments from qualitative analysis. Notes: the 
other category of Bruceton mine denotes artificial ceiling materials and mining equipment. Gunite+coal denotes a discrete 

variegated surface of these two materials. The rock+regolith category under the moonyard column denotes a variegated 
surface of regolith and rock.  
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This section considers aspects of the barren and rocky qualifiers which are functions of the macroscopic 

distribution. It is beyond the scope of this work to characterize a spanning set of planetary 

environments, thus only analysis of several representative environments used for experimentation is 

presented here. These environments are: an underground coal mine, a lunar analog terrain, and a 

natural cave. The nature of these environments and their optical similarity to the general planetary 

population is discussed below. Figure 31 summarizes the approximate distribution of materials as 

fractions of the total internal surface area.   

 

Bruceton Coal Mine 

 

Figure 32. Overhead Map of Bruceton Mine, the primary experimentation environment for mobile robots in this thesis. This 
mine consists of two appearance environments, (1) Corridors consisting of Gunnite covered walls and ceiling and dirt floors 

which constitute over 98% of the surface area of the mine and (2) open coal faces which are less than 1%. Internal objects, 
such as mining vehicles constitute the remainder of surface area. Blue areas represent the open void of the mine within the 
solid strata. 

 
Bruceton is a coal mine in Pittsburgh, located in a bituminous coal seam. It is the main experimental 

environment in this thesis, due to its accessible conditions and location. Bruceton is representative of 
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coal mines in many ways. Perhaps most significantly, it shares the similar macroscopic geometry of the 

room and pillar style (Figure 32). It is possible to describe the mine as consisting entirely of 

homogeneous corridors which meet in right-angle three or four-way intersections or dead ends. It also 

features compacted dirt floors, rail tracks in primary corridors, jarring plastic mine curtains and the 

occasional mine vehicle typical of most underground mines, not just the coal variety.      

However, Bruceton is also a “research” mine, meaning that it is structurally well maintained in 

comparison to commercial coal mines and also that there is no active mining of coal. The appearance of 

Bruceton differs from commercial mines due to these circumstances. First, the roof is stabilized using 

several methods, including girders for structural support, gunite (a diffuse and uniform surfacing 

material) for stabilization and plastic mesh to catch spalled bits of materials. These measures are not 

each in effect over the entirety of the mine; however, there are no places where none of the measures 

are utilized. These roofing materials, particularly the plastic, are among the worst offenders of the 

diffuse and barren assumptions in the mine. In active mines, gunite and mesh are not as commonly used 

for economic reasons.  

 

 

Figure 33. 3D mesh model of corridor in Bruceton Mine, generated by mobile robot.  

 
The walls of the mine are almost entirely covered in concrete gunite which acts as a surface stabilizer 

and flame retardant for exposed coal. This condition strongly satisfies the vision assumptions discussed. 

While, active mines also spray the walls with limestone dust for the same purposes (and is likewise 

diffuse), gunite represents a different material with an extra level of uniformity due to its more 

permanent adherence to surfaces. The main corridors in Bruceton are extremely well maintained; 

however this decreases in areas with less frequent use. Noticeable surface variegation from cracked and 

broken coatings of old gunite, which exposes the underlying coal, is common in the many minor 

corridors.  
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The lack of active mining means that most of the exposed coal faces have been covered. Therefore, 

while Bruceton comprises two distinct environments like most mines - mined-out gunnite corridors and 

open coal faces – the latter represents only a small portion of surfaces. In fractional terms, this is not 

unlike active mines; however, as Bruceton is a small mine, coal faces typically represent a much greater 

explorable region. Active mining also creates pervasive coal dust that accumulates on surfaces driven by 

air currents. In mines with limestone dusting, the surface coating may be similar in appearance to CMU-

1. There is practically no coal dust on surfaces at Bruceton.        

CMU Moonyard 

The CMU moonyard is a lunar analog terrain constructed in a 2m x 1.3m box. This terrain represents 

macro-scale features at a critical sensing distance for surface robots.  A rock size distribution that is the 

average of all the lunar Surveyor sites (Figure 35) was randomly generated on terrain using procedural 

simulation. This was then used as a blueprint for realizing the terrain using analog materials, where 

fidelity of appearance was the major objective. A bed of limestone dust about two inches thick was used 

to create smooth undulations (these were not simulated). Crushed limestone, sieved through critical 

diameters of *2,4,8 …+ mm, were then hand-placed in the generated locations for all rocks larger than 

2mm in diameter. The largest rocks were sized manually, and as diameter is an idealization, some 

oblong rocks were allowed to deviate significantly in the minor axis.  
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Figure 34. A simulated lunar rock distribution utilizing Surveyor data (top left) and realization in the construction of an 

artificial moon scene (top right). The bottom row illustrates a z-colorized mesh model of the scene generated with LIDAR 
scanning (bottom left) and color-mapping of the terrain from DSLR images (bottom right).  

 
 
A layer about 1mm thick of CMU-1 was then dusted across the entire surface, giving a mostly uniform 

covering20. Micro craters were created by ballistic placement of pebbles less than 1mm diameter and in 

the dusting process. Figure 34 shows the ideal distribution of features generated in simulation and the 

actual placement of these features as-built. 

 

                                                                 
20

 Some highly sloped edges reveal underlying rock. 
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Figure 35. Distribution of Rock Sizes (left) at the Lunar Surveyor landing sites, from NASA Surveyor Project Final Report 1968. 
Creation of the moonyard utilized crushed and sieved limestone rocks of different diameter (right).  

 
The moonyard enables convenient physical testing of lunar algorithms. While it is acknowledged that a 

single terrain and even the surveyor distributions themselves cannot account for the variance of lunar 

appearance, this is a sufficiently representative environment for testing. Space weathering through 

prolonged meteorite bombardment has covered the moon in a layer of regolith of appreciable 

thickness. This reduces total variegation, even as rocks of many materials appear on the surface  and 

regolith composition is specific to regions of the moon. The mare regolith is closely matched in albedo 

and reflectance to CMU-1. Moreover, the frequency and distribution of rocks compares favorably to 

Apollo images. There is little in the way of distinctive features that may contribute to systemic 

overfitting to the moonyard where applicable; no individual features are considered. Lastly, training of 

lunar algorithms occurs mostly on simulated data in this thesis, which decouples results from physical 

demonstration21.  
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 The moonyard is used to make generalizations about appearance, but these are not directly utilized in 

computation of approaches.  
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Walker’s Mill Cave 

 

Figure 36. A partial LIDAR scan (left) and photo (right) of Walker’s Mill cave showing the irregular geometry of fractured 
sandstone.  

 
Walker’s Mill cave is a natural sandstone cave in Pittsburgh. It is diminutive, with the main room no 

bigger than 2m tall, and about 11m long; various branches are too small to accommodate humans. The 

entrance to the cave is about 0.5m square and requires an almost vertical entry, making mapping of this 

cave a perfect application for robots, though humans positioned sensors for the data used in this thesis. 

The surface of Walker’s Mill is almost entirely sandstone with negligible amounts of flora and a lizard or 

two. The surfaces are not weathered, and the fractured nature of the rock is evident in the lack of 

uniform floor or ceiling. The cave is damp and most of the walls are covered in a thin layer of water. The 

surface geometric nature of this cave is not common, particularly of sandstone caves. However, it is a 

good example of single-material environments and their prevalence.     
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5.2.1 Variegation 

 

Figure 37. Variegation of Materials in Environments. The walls of Bruceton Mine (top row) show variegation between gunite 
and coal, and occasional artificial objects. Lunar terrain (center) was only numerically analyz ed for the moonyard, which is an 

artificial average case. Variegation is believed to be very low. Walker’s Mill Cave (bottom) shows anisotropic banding of the 
sandstone material, but variegation of material is very low. The right most image shows a single example of plant roots.  

 
Many surfaces documented in these environments are variegated, meaning that they consist of discrete 

“splotches” of differing materials. These surfaces are not well represented by a single macroscopic 

material or albedo, and they are best considered as a combination of surfaces which are each single-

material. Vision algorithms utilizing material information should allow for and be capable of 

distinguishing material changes (see section 2.3). As the planetary rocky assumption provides for 

uniformity of materials (in addition to diffuseness), Lumenhancement techniques presented here cannot 

apply to highly variegated surfaces. However, many times variegation is minor and a simple vision 

solution may mitigate or tolerate some error in these cases.  



 
 

119 
 

 

Figure 38. Variegation Estimation from Images. A color image taken under near-ambient illumination (left) is clustered with 
the Mean-shift algorithm using high noise tolerance and the L*a*b*. A few large clusters are labeled annotated (right). The 

number and size of the resulting clusters determines the variegation of the scene.       

 
Variegation in the representative environments was studied by collecting and analyzing imagery. Figure 

37 shows examples of these images collected. These images are taken under quasi-ambient illumination 

to reduce cast shadows and promote uniformity of appearance for the same materials22. These images 

are then transformed into the L*a*b* colorspace which heuristically separates material from lighting 

changes, and is particularly effective in diffuse environments. With the luminance removed, mean-shift 

clustering [with EDISON; Christoudias, et al. 2002] is performed, using an edge tolerance of 0.9 for high 

noise reduction. Statistics over the number and size of the clusters determine the variegation  (Figure 

38). A square-weighted uniformity score is utilized to give higher weight to a few large clusters as 

opposed to many small ones: 

 21
uniformity i

i C

score S
C 

   (5.19) 

where C  is the number of clusters and iS is the fractional size of the i th cluster (i.e. num_cluster_pixels 

/ total_image_pixels). A higher score represents a more uniform, less variegated scene. It is noted that 

this technique is neither a classifier - it does not assign material labels - nor is it discriminative – different 

materials are occasionally grouped together when cluster size is small or edge strength is weak. The 

uniformity score is only an estimate of the nature and frequency of variegation that has demonstrated 

utility in this work.    
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 Similar to a Lambertian white-out condition 
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Figure 39. Variegation in Bruceton Mine Images. The uniformity score (blue) and the scaled, inverse number of clusters (red) 
are plotted on the same axes for comparison.  Higher numbers represent more uniform scenes.  

 
Thirty six images of various walls in Bruceton were collected. The ceilings and ground were not studied 

as they do not satisfy the domain assumptions and are uninteresting to robot modeling respectively (see 

above). The statistics of the Bruceton data are summarized in Figure 39. An average of 217 clusters was 

required per image, with a wide standard deviation of 72 and a mean score of 0.027. Twelve images of 

Walker’s Mill cave were collected of the walls, ceiling and floor. These were mostly homogenous 

requiring 160 clusters average with a standard deviation of 30. However, the resulting uniformity score 

of 0.020 was slightly lower than Bruceton. This is believed to be from the macroscopic color banding of 

the sandstone, despite known uniformity of material. These bands may share a similar reflectance 

function, but are of noticeably different albedo.  Lastly, only a single overhead image was taken of the 

moonyard, mostly for comparison with the other environments. The  moonyard, a very uniform terrain, 

and had a uniformity score of 0.18, about 6 times higher than the mine. The terrain was represented 

with 28 clusters. Figure 40, below illustrates the variegation of an example indoor scene featuring many 

simple surfaces to be about twice that of Bruceton mine.   



 
 

121 
 

 

Figure 40. Variegation of Indoor Scene. This garage scene required 367 clusters, and produced a uniformity score of 0.0096, 
less than half that of Bruceton mine.  
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5.3 Geometric Characterization 

Geometry is the final key in the three-part appearance model for understanding environments. This 

section explores distributions of geometry – both surface and macroscopic – in planetary environments, 

the suitability of planetary assumptions in explaining these distributions, and the accuracy of surmising 

these distributions with robotic sensors. Experimentation utilizes data from the exemplary 

environments discussed in the previous section.  

5.3.1 Barrenness 

The barren property of environments constrains the local smoothness of surfaces. More explicitly, it 

states that the surface normal, which controls surface irradiance, is related to and can be estimated 

from discrete surface geometry through differentiation ( n̂ x ). The amount of discreteness tolerable 

is of great interest to this work as it defines how densely and how accurately the underlying models 

must be acquired with a range sensor. Similarly, recall that intensity values in planetary constrained 

images are directly related to the gradients of surface geometry ( E x ).  It is also pertinent to 

characterize how well pixel intensity values explain the true surface gradient.  

5.3.1.1 Correlation of Image Intensity to Surfaces 

 

Figure 41. Correlation of Image Intensity to Surface Normals. An ultra-accurate geometric model (1) is used to produce 

surface normal estimates at each voxel location via differentiation (2). The slant angles calculated from these surface 
normals are correlated with pixel intensity from an ambient image (3) and a point-illuminated image (4) that satisfies the  
planetary assumptions.    
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To determine the correlation of intensity images to surfaces, a high resolution HDR image is taken of the 

surface under the constrained illumination conditions. This image is registered with the geometry image 

of a maximum survey-quality scan (1mm range accuracy, 2mm sample spacing) of the scene from the 

same perspective. This geometry image is a rectangular 2D parameterization of the scene much like a 

range image. However, the ( 3N M  ) dimensions explicitly store a cartesian coordinate for each 

sample, enabling higher accuracy than pure depth parameterizations. After registration, both geometry 

and intensity images are voxelized to the same resolution (about 2mm spacing). The pixel values are 

then correlated, using the Pearson product-moment, with the sin23 of surface slant angles which are 

found using the following equation: 

 

22

atan
dz dz

dx dy


 
       

    
 

 (5.20) 

 where dz
dx

 and dz
dy are the surface gradients. The image is then blurred by half the bandwidth using a 

Gaussian kernel to average intensity values and the process is repeated. Averaging pixel values 

determines what amount of image information is noise and how many image samples are needed to 

optimally measure a surface normal.   
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 The slant angle is complementary to the incident angle.   
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Figure 42. Correlation of intensity values to surface gradients for the moonyard under two different lighting assumptions. 
This graph shows that simple point illumination promotes superior surface recovery. The optimal value occurs at n=32 for 
ambient and n=16 for simple lighting.  

 
This analysis was conducted on the moonyard terrain using both camera-centered point illumination 

and ambient illumination simulated by many simultaneous sources (see Figure 41). Figure 42 shows the 

correlation curve for the moonyard over image scales *1, 2, …, 512+ 24. The correlation for the point 

source image goes from p=0.39 for raw pixels, to a high of p=0.43 at n=16, and finally drops to p=0.12 at 

n=512. The correlation for images is moderate in absolute terms, but very high for an image taken in 

environmental conditions. The curve for the ambiently illuminated image, which correlates significantly 

less, supports the hypothesis that simple, point illumination is required for optimal recovery of 

geometry from images.   
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 A value of 2 denotes a 1/2 scale image or roughly speaking, an average of  
2

2 4  pixels.  
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Figure 43. Correlation of intensity values to surface gradients in Bruceton Mine Imagery. A variegated scene with patches of 
gunite and coal is compared against a uniform scene consisting only of gunite. Uniform scenes improve the accuracy of 
geometric recovery with intensity images.    

 
Analysis was also conducted for Bruceton data on representative images (see section 5.2.1 above) to 

compare variegated (many patches of gunite and coal in the scene) and uniform (gunite only) sections of 

the mine.  Both images were taken under point illumination. Figure 43 shows the correlation curves for 

the Bruceton images.  The uniform image continuously drops from a high correlation of p=0.22 at n=1 to 

a low of p=0.07 at n=512. The variegated image follows a similar path, but ranges from p=0.13 to 

p=0.015. The uniform Bruceton image correlates about half as much as the moonyard data. Curiously, 

there is no initial improvement in correlation when neighboring pixel values are averaged. This could be 

the result of the rough gunite surfaces compared to the smooth surface of the dusted regolith.   

This analysis could not be conducted for Walker’s Mill cave imagery because the high-resolution survey 

scanner used to produce clean surface normal estimates could not fit in the entrance (see section 5.3.2).  

5.3.1.2 Smoothness with Autocorrelation of Surface Geometry 

Local smoothness determines the extent of surface deviation between two sampled points. The local 

smoothness of planetary surfaces is tested with the same approach as the correlating pixel intensity, 

except an autocorrelation is preformed with downsampled data instead. Bilinear interpolation in range 

image space enables comparison of the downsampled and native density models at high resolution. 

Surface slant estimates are generated from each using numerical differentiation. 
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Figure 44. Archetypical Component Geometry in Coal Mines. Point clouds of corridors, 3-ways and 4-way intersections are 
utilized in testing how macroscopic geometry affects the smoothness constraint (left). The holes in the point cloud are from 
sensor self-occlusion, and do not effect computation. A barrel against the backdrop of a smooth wall creates an occlusion 

edge which strongly breaks the smoothness assumption (right).  

 
Three high resolution scans of Bruceton were collected at archetypical corridor, 3-way intersection and 

4-way intersection locations (Figure 44). Each of these scans has a minimum range of 1m and a 

maximum range of 7m where the areal density of points is 1 per cm2.  

These component environments are utilized to test barrenness as a function of local differentiability as 

well as macroscopic differences in the number and magnitude of known occlusion edges (i.e. corners) in 

the scene. Occlusion edges, resulting from range discontinuities create problems for estimation of 

surfaces (and their normals) from LIDAR and image data. It is not always possible to differentiate 

between an occlusion and a high gradient surface from a single view, particularly when interpolation or 

rescaling in image space is performed. Moreover, occluding objects cast shadows, which violate simple 

source constraints in intensity images. 
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Figure 45. Autocorrelation of Interpolated Normals from Mine geometry. Areal density at the maximum range of 7m is about  
4 range samples per cm2 at native resolution (512x) down to about 0.18 samples per cm2 for 1x density. Data from three 

geometrically distinct scenes within the mine are shown: a straight corridor, a 3-way intersection and a 4-way intersection. 

   
Figure 45 illustrates autocorrelation of downsampled range data with its native resolution counterpart. 

Each sample density uses an average correlation from 10 trials of random downsampling. The low end of 

the spectrum ranges from 1x sample density to 512x at the high end (which is the native resolution). The 

graph shows that interpolation of range readings to estimate true surface normals is surprisingly robust. 

Correlation remains strong even with 8x downsampling. The curves from the different scenes are also 

very similar indicating that the overall quantity of occlusion edges in each scene is similar and low. Their 

effect on total correlation is minimal even as their individual values may be way off. Only when sampling 

density is severely deficient, do the differences in macroscopic geometry play a significant role.  
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Figure 46. Autocorrelation of Interpolated Normals from Moonyard geometry. Areal density ranges from 1mm grid size at 

512x resolution to a 23mm grid size at 1x.  

 
The analysis was also conducted with moonyard data using a surface grid size of 1mm at native 

resolution. Due to the manageable nature of the terrain, samples are uniform throughout. This presents 

an opportunity to explore “clean” data featuring less bias from a disparity of ranges and errors like 

mixed pixels from glancing LIDAR measurement. As such, it represents closer estimation of true surface 

smoothness, while the Bruceton data represents the aggregate effects of sampling in situ with non-ideal 

measurement.  

Figure 46 shows that the absolute values of moonyard autocorrelation are greater across the entire 

spectrum of sampling densities. This is within expectation given the features of the lunar terrain. 

Interestingly, the curve shows very similar smoothness behavior to the mine.  

5.3.2 Accuracy of Modeling 

Geometry in environments cannot be known to arbitrary precision. Surface geometry is only resolvable 

to sensing resolutions. LIDAR is perhaps the only way to directly measure geometry; yet it is sparse, 

subject to noise and exhibits a multitude of nonlinear effects. While sensors are not attributes of the 

environment, it is important to understand their performance, particularly when the objective is 

modeling by measuring surface geometry. Sensor characterization informs the intrinsic accuracy of 

range models gathered with robots as well as contrasts the accuracy and density of different sensing 

modalities. This information can be utilized in the design and targeting of multi-sensor techniques. A 
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brief study of sensor performance is included here as part of more expansive environmental modeling 

work of the author [Wong, et al. 2011].  

 

 
Figure 47. Illustration of Sensors and Configurations Evaluated – (1) rotating Hokuyo UTM-30LX, (2) rotating SICK LMS111-

10100, (3) rotating SICK LMS291-S14, (4) rotating SICK LMS511-10100, (5) rotating SICK LMS200-30106 affixed on a mobile 
robot, (6) Faro Photon80, (7) IFM O3D 201, (8) custom structured light sensor, (9) custom stereo vision sensor and (10) 

Microsoft Kinect.  

 
The modeling performance of 10 range sensors was evaluated (Figure 47). Sensors were selected based 

on prevalence in robotics modeling usage and availability. Experimental configurations (i.e. actuation, 

physical parameters, and external illumination) were chosen to reflect optimality for modeling at a 

critical sensing distance of 2-8 meters [Omohundro 2007] (Table 6). This study is not intended to be a 

comprehensive sampling of sensor configuration parameters, but rather a broad sampling of sensor 

types applicable to planetary spaces25. For example, a baseline of 250mm and infinite focal distances 

were utilized for stereo vision; a less common configuration found in indoor robotics. There is no claim 

that results generated herein are strictly valid for any sensors or configurations other than those 

evaluated. 

                                                                 
25

 Applicable in a phenomenological sense: stereo is not applicable in absolute darkness without external 
illumination and visible structured light is l ikewise not applicable in daylight. Attributes such as space worthiness 

are not considered.   
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Table 6. Evaluated Sensors and Technologies 

Sensor Model Technology Evaluated Configuration 

SICK LMS200-30106 Planar ToF LIDAR 0.5 x 180 degree rotating, 8m mode 

SICK LMS291-S14 Planar ToF LIDAR 0.5 x 90 degree rotating, 8m mode 

SICK LMS111-10100 Planar ToF LIDAR 0.25 x 270 degree rotating, 20m 

SICK LMS511-10100 Planar ToF LIDAR 0.5 x 190 degree rotating, 24m clipped 

Hokuyo UTM-30LX Planar ToF LIDAR 0.25 x 270 degree rotating, 24m clipped 

Structured Light* Structured Light 
PtGrey Scorpion w/ projector 
(1280x1024), 0.25m baseline 

Microsoft Kinect Structured Light 
Off the shelf configuration, libfreenect, 
~5m range 

Stereo Vision* Stereo Vision 
2x Prosilica GC1290 (1290x960), ELAS, 
0.25m baseline 

IFM O3D 201 Flash LIDAR Off the shelf, ~8m range 

Faro Photon80 Phase-shift LIDAR Off the shelf, 5mm, 24m clipped 
*denotes an in-house implementation 

 

Characterization involved scanning a 1.25m x 1.25m, tiled and colored 3D checkerboard in a controlled 

laboratory setting. While such “ideal” targets do not exist in field application, their artificial nature 

enables construction and knowledge of the true geometry to arbitrary tole rance. This information is 

useful in determining the true error of range sensors, which cannot be surmised in unstructured 

environments, as well as for testing the rare “edge cases” of sensor error. The checkerboard utilized is 

constructed to a tolerance of 1mm, beyond the expected accuracy of most contemporary range sensor 

technologies.  

 

 

Figure 48. A 3D checkerboard target used for ideal characterization (left), example experimental setup (LMS291 shown) for 
scanning the checkerboard (middle), and a mesh model of checkerboard generated using range data (right).  
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Features of the checkerboard are illustrated in Figure 48. Two colors of semi-gloss dark tiles, raised 

1.9cm (0.75”), are mounted on a neutral white diffuse backplane. Varying the surface reflectance of the 

tiles as well as the color enables characterization of sensor error as affected by target material. The 

pyramidal tiles located on the cardinal points of the target rise 3.8cm (1.5”)  from the backplane and are 

used to automate the process of aligning scans as well as testing pin-point sampling. 

The target is centered such that the normal ray of the sensor passes through the middle tile. Scans are 

taken at a distance of 2.0m from the sensor origin and repeated for primary angles of 90 (normal), 67.5 

and 45 degrees. Calibrated mount locations on a support frame provide ground truth for sensor 

positions from which the checkerboard is scanned (Figure 48 - center). 

 

 

Figure 49. ICP aligned range data from Photon80 with detected tiles and background (left) and range error plot illustrating 

the “mixed pixel” effect near the edge of the tiles (right).  

 
Raw output from sensors is first transformed to point clouds with minimal filtering (no-return, max/min 

range). Point cloud data is then aligned with the ideal checkerboard model. While approximate sensor 

and target orientation are known, rotational ambiguities, inaccuracies in mounting and the intrinsic 

properties of the sensor result in error in raw data. Moreover, while the target may be oriented at a 

number of angles, the ideal model and error analysis assumes a fronto-parallelism. Utilizing initial 

estimates of sensor pose, the processing algorithm automatically detects the corner features of the 

checkerboard and finds a rigid transformation to the known model. A numerical optimization method, 

iterative closest point (ICP), is then used to fine-tune the alignment in the presence of non-rigid 

distortions and noise (Figure 49). Points detected as being on the raised tiles are colored red, while 
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points detected as part of the back plane are green. Corners of the files are marked with blue +’s. Two 

statistical measures of quality are then computed: 

Range Error. The range error is the error between an observed data point and its known true location 

for a single measurement. The mean of the error distribution is a common measurement of accuracy. 

The range error used here is calculated by aligning sensor data of the target to the ideal model using ICP 

and then raytracing the datapoints from the sensor origin. The L2-norm of the difference is the reported 

value. A large range error indicates an inaccurate or poorly calibrated sensor. The standard deviation of 

the range error is a measurement of precision.    

Interpoint Distance. A frequent objective of 3D scanning is to create a mesh model  or to infer surface 

geometry for object recognition. Both these applications require dense and regularly distributed surface 

samples. Interpoint statistics are generated by performing a 2D Delaunay triangulation on the surface 

points and measuring the distribution of resulting triangle side lengths. Large interpoint distances are 

indicative of “holes” in the model while a large variance in interpoint distances is indicative of badly 

shaped triangles. This statistic reflects the density of measurements on the target, which is an amalgam 

of angular density, sample rate, and field of view. Many actuated sensors which generate gratuitous 

readings but lack angular resolution in one or more axes exhibit inferior performance in resolving 

objects as compared to low-rate, fixed-resolution sensors. 
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Figure 50. Summary of Ideal Target Characterization with detail of planar time-of-flight LIDAR performance (inset). All 
statistics are for single-shot measurement where applicable.  

 
Using the metrics described, analysis was performed on sensor scans of the ideal target. The results are 

shown in Figure 50. The x-axis (range error) is the empirical value of the accuracy and the y-axis 

(interpoint distance) represents density. Sensors closer to the origin (zero) have better performance. 

The colored ellipses represent the uncertainty in the estimation of this value and are scaled by a factor 

of two for clarity. Experimental error, such deviations in mounting and data capture, as well as noise 

generated in the physical sensing process contribute to greater uncertainty. 

The results show a natural grouping of the sensors into three performance classes. The Faro Photon80 

was in a class of its own in regards to both metrics: a conclusion consistent with its pricepoint. As-built 

and survey LIDARs such as the Photon80 are designed to trade portability for maximal modeling 

performance. The Photon80 is utilized for collecting all characterization and “ground truth” models in 

this work. The sensor has a range accuracy of 4mm for a single shot. Multiple returns can be averaged 

for a more accurate reading, which is the mode of operation utilized. Ground truth models have a three 

sigma uncertainty of about 2mm. Maximum areal density at the critical sensing ranges of 2-8m are well 

within 1mm2.   
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All five planar time-of-flight sensors characterized exhibited similar performance in a class below the 

Photon80, which is consistent with manufacturer specification and intended application. The LMS200, 

which has been a staple on underground modeling robots due to its lack of built-in filter, ties the 

LMS511 in accuracy and nominally wins out over the others. The LMS200 is utilized on the Cavecrawler 

mobile robot featured in this work and has a practical range accuracy of 6mm. It should be noted that 

software issues prevented the LMS511 from operating at the highest angular resolution, though 

accuracy was unaffected. Had the sensor been capable of the factory maximum 0.125deg resolution, it 

likely would have been the best performing ToF LIDAR. 

Inconsistent performers comprise the last class of range sensors. These sensors feature notable 

shortcomings in one or both of the metrics. Flash LIDAR is a nascent technology for outdoor sensing; the 

IFM O3D has comparable performance to the in-house designed stereo and structured light sensors, 

though it exhibits marginally better balanced performance and higher robustness. The structured light 

sensor has high range error arising from poor reflectivity that affects localization of light stripes at the 

highest scale, but the pattern and consistency of identified points is uniform and dense resulting in 

better target coverage. The structured light configuration is utilized in the case studies section of this 

thesis to implement a new hybrid sensor to improve these shortcomings. Stereo vision is strongly 

affected by the lack of texture and the repetitive tiling on the checkerboard. Depth estimation is 

generally accurate near the edges and corners of tiles and poor in the middle. The ELAS algorithm 

automatically rejects these ambiguous areas, leaving accurate points, but with large holes in between. 

Results from the Kinect sensor are intriguing. While the density score is skewed due to fortuitous 

combination of narrow field of view and high density of the CCD, the pixel samples are not truly 

independent due to interpolation. However, the Kinect functions admirably as a low-cost volumetric 

mapper in this ideal case, greatly outperforming its pricepoint26.  

  

                                                                 
26

 The Kinect is likely not applicable to field environments due to packaging. However, it is included here for 

comparison due to popularity in indoor robotics.  
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5.4 Discussion 

Utilizing statistics from material, geometric and environmental characterization, informed comparisons 

of environments can be made. Table 7 below compares the mine, moonyard and cave using the barren 

and diffuse assumptions of planetary appearance and a third attribute that describes uniformity of 

albedo. Statistics from an indoor garage scene are included as well. These metrics show that the 

experimental environments are more diffuse, equally barren and highly uniform compared to the indoor 

scene. Of course, the indoor scene is a single example; however it also represents a highly constrained 

environment apart where simple vision techniques are applicable and successful27. Thus, these planetary 

examples compare favorably for the use of imaging.  

 
Table 7. Comparison of Environmental Attributes Satisfying Planetary Appearance Constraints. The indoor garage is a single 
example intended for comparison. A picture of the scene is shown in Figure 40. Diffuseness value is the representability of 
dominant materials as Lambertian. Barrenness is the correlation of image intensity with range gradients under point 
illumination. The uniformity score defined in the prior sections. All metrics are in the range [0,1].    

 Diffuseness Barrenness Uniformity 

Bruceton Mine 0.78 0.22 0.027 

CMU Moonyard 0.96 0.39 0.180 

Walker’s Mill Cave 0.83 n/a 0.020 

Indoor Garage 0.50 0.33 0.009 

 

The diffuseness scores in Table 7 are generated by using the occurrence ratios in Figure 31 and 

multiplying each material by the difference in correlation between the Lambertian and the best-fit BRDF 

model found with gonioreflectometry. The scores are given by the following calculations: 

Bruceton 

       45% gunite  0.82 15% coal  0.87 25% gravel/dirt  0.82 15% other  0.5        

Moonyard 

   90% regolith  0.96 10% limestone  0.98    

Walker’s Mill 

   99% sandstone  0.84 1% other  0    

The diffuseness of gravel and dirt are approximated from limestone and oren nayer soil material. 

Diffuseness of the “other” materials are from conservative estimates. The indoor scene is approximated 

                                                                 
27

 The scene is a part of the “highbay” at CMU, academic laboratory environment where robotic vision systems  are 

frequently (and successfully) tested.   
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from the qualitative prevalence of semi-gloss flooring, windows, and other metallics in comparison to 

Lambertian walls and cardboard boxes.   

The barrenness score is estimated from the correlation of image intensity values to surface slant at 

highest resolution and under point illumination. The value for the indoor scene is for ambient 

illumination as it was impossible to light the scene with a point source. Thus, it is not an entirely 

accurate comparison. Barrenness of the cave was not estimated because of lack of high resolution 

geometric data. However, it is likely that this environment is less barren than the mine due to the jagged 

interior surfaces. Lastly, the uniformity scores are directly is from the variegation clustering experiment.  

Limitations 
The analysis here is intended to only guide and inform about the validity of the planetary constraints in 

example environments. The findings are only directly applicable to these specific datasets in the 

experimental environments. This data is subject to noise, sample bias, and gross variability which cannot 

be accurately estimated in such continuous spaces. Blowing dust, dripping water, and other ephemeral 

effects are all artifacts of sensing in the field which ultimately cannot be ignored. These environments 

are moreover not wholly representative of what may be considered “planetary” in common use. The 

aforementioned Martian daylight surface diverges significantly from these examples; however, the 

nighttime may be sufficiently similar. Volcano fields may appear more rocky and barren than 

environments analyzed here, but scintillate at specific illumination and view angles. Discretion and 

probabilistic appreciation must still be used in applying inferred properties of the domain to specific 

applications and environments.       

 

 

 



Chapter 6:  
 

Planetary Case Studies for 
Lumenhancement 

This section presents application-oriented case studies of Lumenhancement. These are approaches 

designed to solve specific problems using planetary domain knowledge, but are applicable to many 

other environments through generalization of appearance. These studies also document the extensive 

field validation of the thesis and implementation on working robot systems.  

6.1 Camera and LIDAR Fusion for Super-Resolution Modeling 

 

Figure 51. Sparse LIDAR range readings(left) and high resolution intensity images (center) can be fused to create super-
resolution models (right) with a Markov Random Field. 
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Mine accidents including those at Quecreek, Sago and Crandall Canyon highlight the urgency of 

estimating accurate 3D geometry in mines. Systems have been employed to map mines, from virtual 

reality systems for training rescue personnel [Boulanger, et al. 2001]  to automated survey robots and 

post accident investigation [Morris, et al. 2006]. While many of these systems use state-of-the-art direct 

range measurement sensors, LIDAR sensors alone cannot meet the resolution, size, power or speed 

requirements to produce quality mine maps in a practical amount of time.  

Absolute range sensor data can be fused with high-resolution CCD imagery to achieve a quantitative 

increase in range data accuracy and density in a process called super-resolution. While this application of 

Lumenhancement targets artificial subterranean voids, the technique is applicable to any similar 

planetary spaces where assumptions can constrain the image formation problem. As both color and 

geometric information are of interest, cameras and range sensors commonly exist on modeling 

platforms [Morris, et al. 2006]. Thus, integration of the method presented here requires only calibration 

and low processing overhead. 

 

 

Figure 52. A mine inspection robot with active illumination, CaveCrawler, in process of corridor modeling (left) and raw 

fisheye photographic data (right). Note that the left image utilizes a different lighting configuration than presented here.  

 
The results from field experimentation in a working mine are discussed in detail. Dense visualization 

techniques enabling mesh quality models to be displayed and updated in real-time on GPU hardware 

are also explored.  
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6.1.1 Foundational Work 

The fusion of range and imaging sensors to improve 3D model quality has been studied in depth [Li 

2001; Diebel, et al. 2005; Torres-Mendez 2005; Gould, et al. 2008]. A general model for fusing raw LIDAR 

and image data into super-resolution range images using a Markov Random Field (MRF) was explored in 

Diebel and Thrun’s seminal paper *Diebel, et al. 2005]. MRFs are undirected graphs that represent 

dependencies between random variables and have been used extensively in computer vision for noise 

removal, feature matching, segmentation and inpainting (see [Li 2001]). The popularity of the MRF 

stems from the ability to model complex processes using only a specification of local interactions, 

relevance to the regular grid nature of CCD images, and the maximum a posteriori (MAP) solution 

requiring only direct convex optimization in many cases.  

Diebel and Thrun surmised that higher resolution intensity (color) data could be used to texture range 

images and increase the range accuracy of interpolated points. The results in a uniformly and sufficiently 

illuminated regular office environment are quite compelling. Cameras are able to turn LIDAR scans into 

dense range images with very low computational overhead. However, the assumption that an image 

provides relative range information, even locally, is tenuous in unstructured environments. Generating 

3D geometry from a general 2D projection is an ill-posed problem. The ability of Diebel’s method to 

smooth point clouds using areas of flat image information was convincingly shown, but the converse of 

enhancing a point cloud using image texture was not. Recent research in range/camera fusion using 

MRFs include [Torres-Mendez, et al. 2008; Gould, et al. 2008]; all of which also target indoor application. 

This research extends MRF-based super-resolution to subterranean environments such as mines, caves, 

lava tubes and sanitary pipes. These environments have unknown but slowly varying albedos with a 

dominant diffuse reflectance term. These naturally-dark, enclosed spaces also require active 

illumination to image, enabling the use of calibrated lighting. With these assumptions we are able to 

provide a stronger depth estimate for texturing the interpolated LIDAR data.  

6.1.2 Fusion in the Markov Random Field Framework 

A range image is used as the common representation for fusion. The 3D range cloud data is registered to 

the pinhole of the camera, forming a range map (R) via projection of distances onto the n m  image 

plane at equivalent resolution. Many pixels in the range map will not contain range measurements; 

these holes are filled from nearby data through bilinear or nearest neighbor interpolation. The color 

image data can be then converted to intensity values or used as a raw RGB vector ( I ). A lattice MRF is 
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formed where there is a single range and intensity measurement associated with each node  (Figure 53). 

This is similar to the MRF fusion method documented in [Diebel, et al. 2005]; however, the image 

gradients are instead numerically integrated in this framework. 

 

Figure 53. Markov Random Field Graphical Model. Green nodes (I) represent the image pixel data, brown nodes (x) represent 
the hidden true range value to be estimated, aqua nodes (R) represent the sparse range data and the blue node represents 
the interpolation uncertainty estimate. There is 1 pixel value for every hidden node (x), but there may  be many nodes 
without a corresponding range value (R).    

 
The range map potential (6.1) promotes agreement between the estimated variables and the 

interpolated range data.  

  1 i i

i L

w R x


    (6.1) 

The smoothness prior (6.2) regularizes large changes in the range estimate and like the image potential 

(6.3) connects potential transfer from a node to its neighbors. 
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The image gradient is a reasonable predictor of depth change across neighboring pixels. However, 

integrating the gradient to produce depths over a large locality is prone to drastic shape distortions. The 

range estimate can be used to regularize numerical integration of the intensity gradient. Moreover, it 

can ensure that nodes with true range readings are never changed. The weights   and   are relatively 

scaled by an interpolation distance uncertainty ( ) for some weights 
1w  and 

2w  (6.4).   can be 

generated from the range image during inpainting by using the Matlab command BWDIST, for example. 

The potential function corresponds to a Gibbs distribution of the form : 

  
1 1

( | , , ) exp
2

p x R I
Z


 

   
 

 (6.5) 

 argmin ( )mle xx f   (6.6) 

Solving for the MAP of the distribution requires running a gradient descent algorithm on the target 

variables x  in (6.6), where Z  is the partition function [Diebel, et al. 2005].    

6.1.2.1 Structure from Shading 

The image gradient 
ijI  in (6.3) can apply to either raw pixel data or better estimates of depth from the 

camera. As scene geometry cannot be ascertained from a single image without assumptions, often no 

better estimate exists. Definite reconstruction requires knowledge of image formation parameters like 

light field, surface reflectance (BRDF) and albedos. However, if assumptions like those commonly made 

in Shape-from-Shading are valid, as in the planetary domain, the amount of certainty is greatly 

increased. 

The illumination and reflectance assumptions are appropriate for subterranean environments. Most dry 

underground mines and caves are located in Lambertian rock and many coal mine interiors are 

additionally covered with diffuse material like Shotcrete [Clements, 2003]. Low amounts of metallic 

meshing, industrial equipment, water and retro-reflectors are present, but the contribution of these 

specular surfaces can be reduced using the method documented below and in [ Mallick, et al. 2005]. 

Robots in these naturally dark environments can be fitted to carry small area light sources for 

photography which produce simple light fields.  

The MRF image observation ( I ) is estimated using Shape-from-Shading given the above assumptions. A 

lightness-based direct normal estimation method which uses range information is given below, but 

other techniques exist (see background section 4.3). This method factors range information to allow 
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varying albedos and trades accuracy for feature preservation. The effect of the light source’s irradiance 

fall-off is first removed from the raw image data (
0E ). The following irradiance correction model for 

small area sources is assumed (6.7): 

 
0( ) n

unbiasedE E R   (6.7) 

The radiometric function ( ) maps pixel values to irradiance, ( R ) is the interpolated depth estimate 

and ( n ) is the irradiance fall-off factor. For ideal point sources 2.0n  , while 2.0n   for near-field 

area sources. The experimental setup described below exhibits an empirical decay of 1.27n  . The 

corrected image (
unbiasedE ) is devoid of a near-field illumination intensity bias from the use of an area 

source. Moreover, the compensation of intensity enables smooth color alignment when stitching several 

scans together.    

Converting RGB color into a single intensity value provides compactness and symmetry, and also 

minimizes chromaticity effects. Color space transformations such as CieLAB or YCbCr are often used to 

heuristically isolate the lightness component of an image, discarding chromaticity and albedo. The SUV 

transformation [Mallick, et al. 2005] describes a class of physics-based specular-invariant color spaces 

produced by rotating the RGB space such that a single channel is aligned with the illuminant color 

vectors. This method has produced excellent results with single-source images and enables many 

Lambertian algorithms to handle a large set of environments with specularities. The specular invariant 

image, as defined in equation (6.8)-(6.9), is used in experimentation: 

   ( ) ( ) ( )[ , , ] , ,
T

T r g b

r unbiased unbiased unbiaseds u v R E E E       (6.8) 

 2 2

invE u v   (6.9) 

 rR   is defined as a (3 3)  rotation matrix that aligns the red channel of an { , , }r g b  triple with the 

source color. The magnitude of the { , }u v  components is taken to be the diffuse image.  

An albedo map is subsequently generated from the diffuse image using Blake’s method for lightness 

computation [Worthington 2005]. Perceived intensity is a multiplicative relationship between surface 

slant angle and reflectance28. The log image separates these components into additive terms. Scene 

                                                                 
28

 Recall  the Lambertian BRDF:  ˆ cosE n l n l
 

 
    
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albedos can be recovered from the gradient of the log diffuse image by thresholding to remove small 

changes and integrating. It is noted that the problem can be recast as finding the log albedo map (  ) 

that minimizes the following equation: 

 

22

arg min log loginv invT E T E
x x y y

   
     

     
      

 (6.10) 

where (T ) is the threshold function. Exponentiating ( ) with the proper constant of integration 

produces the albedo values (6.11). The constant can be estimated from the range data to minimize 

depth discrepancy in the reconstruction.  

 exp( )est c    (6.11) 

Lastly, surface normal approximations for every pixel are obtained by solving the Lambertian reflectance 

model:  

  cosinv nlE n l   (6.12) 

 arccos inv
nl

est

E




 
  

 
 (6.13) 

The polar estimates (
nl ) are combined with azimuth estimates ( ) from the range image. Range data is 

taken to be a reasonable indicator of the gradient direction while image intensities modulate the 

gradient magnitude. An integrable surface is constructed from these normals using the method of 

[Frankot, et al. 1988]. The surface reconstruction is passed into the MRF as a second range image. An 

accurate surface is neither required nor preferred from this method. Instead, pre servation of high 

frequency detail is preferred, while global consistency is enforced by the decoupled MRF pass.   
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6.1.2.2 Algorithm Summary 

 

Figure 54. MRF Super Resolution Process. (1) Raw LIDAR point data is converted to a range image from the camera 
perspective. (2) Specularities are removed from the color HDR imagery to produce a diffuse image. (3) Surface normals are 
estimated from the diffuse image using shape from shading. (4) The surface normals and the range image are fused in the 

MRF framework.   

A flow chart overview of the technique presented is shown in Figure 54. Raw LIDAR data is first 

projected into the space of the image, and resampled (interpolated) to form a co-registered range image 

at the resolution of the color image. Then, HDR color images taken under controlled illumination are 

transformed into a purely diffuse intensity image using the SUV transformation and knowledge of the 

spectrum of the light source. The diffuse image along with image features like saturation, illumination 

and albedo estimates are utilized in a shape-from-shading approach to generate surface normal 

estimates at every pixel. An MRF fuses the range image, surface normals and uncertainty map into a 

single high-resolution depth map.  
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Figure 55. Intermediate Representations of Data for Fusion. (1) Raw fish-eye Image of a mine scene. (2) Range Image 
(depthmap) from raw LIDAR readings. Depthmap shown is warped to the space of the fish-eye image. (3) Ground truth 
depthmap. (4) Irradiance compensated color image, clipped to the boundaries of the LIDAR data. (5) Intepolation 

Uncertainty map. White values indicate scan points, while varying degrees of gray indicate increasing interpolation distance 
between scan points. (6) Specular-Invariant image after SUV transform. (7) Shading estimate from intensity image. (8) 
Surface Normal map from shading estimate utilized in MRF. RGB channels correspond to magnitude in XYZ Cartesian 

coordinates of unit normal vector. (9) Super-Resolution point cloud generated using MRF technique, showing detail of roof 
supports (right side of image).     

 
Some examples of intermediate data representations in the fusion process are shown in Figure 55. The 

data is from an underground mine scene with a mine curtain on the left, roof supports on the right and 

mesh, which stabilizes the exposed rock of the ceiling.   

6.1.3 Experimental Results 

The experimental setup uses both a continuously rotating planar LIDAR scanner and an 8 megapixel 

DSLR camera mounted to a mine robot, CaveCrawler. A small area light source is also mounted along the 

same axis to minimize cast shadows in the image. This replaces the normal flood lighting for the imager. 

The scanner has a practical throughput of ~40,000 points per second. The points are aligned along 

concentric rings with 0.5° angular separation in a 180° hemisphere in front of the unit. The camera takes 
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hemispherical images using a constant angular resolution fisheye lens with a 182° field of view. The 

sensor mounting configuration and example data are shown in Fig. 1 below.  

 

 

Figure 56.  (Left) Experimental setup with 1. LIDAR scanner. 2. Fisheye Camera, 3. Light Source. (Center) Raw fisheye imagery. 
(Right) Ground truth range image.  

 
Thirty complete datasets consisting of LIDAR scans, High Dynamic Range (HDR) imagery and robot 

odometry were collected from the Bruceton Research Coal Mine in Pittsburgh, PA. LIDAR scans averaged 

600,000 points. HDR images were each generated from a series of 5 images corresponding to exposures 

times of {¼, ½, 1, 2, 4} seconds using the method described in [Debevec, et al. 1997]. The 1.0 second 

exposure image was used as the Low Dynamic Range (LDR) reference image for analysis. An additional 

16 datasets of LDR-only imagery were also collected.  

A ground truth range map was generated for each LIDAR scan using the full point cloud. Multiple 

measurements mapping to the same pixel were averaged. The scans were subsequently down-sampled 

to 25,000 points and interpolated into a range image for testing the method. The datasets were further 

partitioned into test sets (25 HDR + 16 LDR) and training sets (5 HDR). Optimal weighting factors were 

learned using a simplex search on the training set, while validation occurred in the test set.  
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Table 8.  Summary of Interpolation Accuracy 

Set # Bilinear Reference MRF Proposed Improvement 

1 5.3 5.3 4.8 9.9% 

5 3.0 3.0 2.7 12.8% 

9 2.9 2.9 2.7 7.6% 

13 3.5 3.5 3.0 14.8% 

21 7.4 7.4 6.3 17.9% 

25 7.6 7.6 6.9 9.3% 

32 5.9 5.9 5.2 12.2% 

38 10.5 10.5 9.1 15.9% 

Total (41)    12.2 
*10 selected data  sets reproduced here. Rest are omitted for clari ty.   

**mean per-pixel error in units of centimeters 

 

 

Figure 57. Reconstruction Improvement vs. Raw Interpolation.  

 
The results of the experiment are summarized in Table 8 and Figure 57. The Lumenhancement-inspired 

method is compared against Diebel’s method and raw interpolation. In this comparison, the mean per-

pixel error between the reconstructed range map and the ground truth map is used as the benchmark. 

Ground truth data points outside the convex hull of LIDAR values in the interpolated map are discarded 

due to skew in scoring extrapolated points. The usable pixel area is determined for each scan by the 

number of saturated pixels, the range image convex hull and removal of high-gradient probable error 

values.  

An example reconstruction from a single view point scan utilizing the mine scene described in Figure 55 

above is shown in Figure 58 and Figure 59. Detail of features of interest to inspection – the roof supports 
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and mine curtain – illustrate both a qualitative increase in measurement density and a quantitative 

increase in range accuracy.  

 

Figure 58. Point Cloud of Cribbing. Low resolution cloud (left) and high resolution reconstruction from algorithm (right) 
showing stacked timbers supporting the roof.  

 

 

Figure 59. Colorized 3D Reconstruction. Full scene (left) and mine curtain detail (inset and right).  

 
Table 9 summarizes important statistics of the field experimentation. In particular, individual results for 

the LDR and HDR imagery are given for comparison.  
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Table 9. Summary of Super-Resolution Experimentation 

Quantity Details 

Total Test Datasets 41 

 {HDR, LDR-only} Datasets {25, 16} 

Interpolation Improvement  

 Mean 12.2% 

 Max, Min 19.2%, 3% 

Density Statistics  

 LIDAR downsample 25,000 points 

 Ground Truth LIDAR 669,834 points 

 Mean Resultant 1,045,358 points 

 Mean Increase 41.8 x  

Image Usability Information  

 LDR Saturated 3.17% of total pixels 

 HDR Saturated 4.20 x 10-2 % of pixels 

 HDR Accuracy Increase 20.5% over LDR-only 

 HDR Density Increase 51.5% over LDR-only 

 
 
Additional data of two corridors were also collected at the Bruceton Mine along evenly spaced intervals 

roughly 3 meters apart. Using robot odometry and Iterative Closest Point (ICP) alignment, multiple scans 

were up-sampled using super-resolution Lumenhancement, fused together and color/illumination 

compensated. These models represent some of densest, most comprehensive mine reconstructions to 

date using a mobile robot. The results appear below: 

 
Table 10. Corridor Modeling Statistics 

Model # # of Scans # of Images # Points 

1 4 16 5,543,451 

2 8 32 9,680,105 
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Figure 60. Mine Corridor 3D model. (1) External view. (2) Internal view with rail tracks.   

 
The density of resulting points opens many possibilities for visualizing data. While decimated meshes 

provide continuous surfaces and fast hardware rendering, large meshes have high pre-computational 

overhead, correct surface polygonizations are non-trivial and display devices are not optimized as 

polygons approach pixel size. Points with color and normal information (surfels) are an alternate way of 

visualizing this information [Pfister, et al. 2000]. With the advent of general pixel shader hardware and 

high throughput measurement techniques, point rendering has become an alternative to meshing, 

especially when real-time structural updates are necessary. 
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Figure 61. Detail of Hole Filling Process. Dense underlying geometric points are connected with their neighbors using multi-
scale texture. Surface normal estimates from image data provide discontinuity checks and perception of shape.    

 
The results are displayed using a hole-filling method similar to the multi-scale push-pull technique in 

[Grossman, et al. 2007]. This display system is adapted to benefit from high density clouds generated 

using super-resolution methods. Point clouds are rendered with push-pull interpolation in image space. 

A min-depth check and kernel density estimator are used to resolve edge discontinuities and remove 

occluded background measurements. The utilization of texture in-painting for both color interpolation 

and depth reconstruction provides the viewer with graphical continuity as well as proper occlusions, 

which standard point displays lack. In addition to fast rendering of huge datasets, the renderer allows 

the model to be updated in real time as new data arrives without costly re-meshing operations. The 

system can generate real-time (>30Hz) imagery at 1080p HD resolution on commodity (GeForce GTX 

260) hardware with point clouds of greater than 5 million points. 

6.1.4  Analysis 

The results show that the method increases interpolation accuracy by up to 20% on the Bruceton Mine 

data, with an average improvement of 12%. The fisheye-spinner setup features density increases up to 

70 fold, with an average of 40x increase in density (Table 9). Of note is that real resolution is created 

where LIDAR beam physics dictate a maximum angular resolution. This is apparent in 3D scanning 

mechanisms that actuate a planar sensor, where an increase in data collection time results in 

diminishing resolution returns. Lastly, a comparison of LDR and HDR imaging shows that increasing the 

dynamic range greatly improves the density and improves accuracy to a lesser extent. Due to the harsh 

artificial illumination in the naturally dark mine, saturation plays a significant role in the amount of 

usable data. Accuracy increases from HDR are the result of enhanced decimal resolution for surface 

normal estimation.   



 
 

152 
 

To validate that true information is being stored in the interpolated values, a sliding-window 15x15 pixel 

Pearson correlation was performed on the test data. As shown in Figure 62, the shaded image provides 

significant information about the ground truth that is not contained in interpolation. The fused range 

map correlates more than either source individually, concurring with the error estimation benchmark. 

While Diebel’s method shows an infinitesimal increase in numerical accuracy (Table 8), it is not 

statistically significant. This is corroborated by almost equal amounts of strongly negative and positive 

correlation in the raw image data. 

 

 

Figure 62. (Left to right) Roof supports covered in Shotcrete; Raw intensity to ground truth correlation; Shape-from-Shading 

estimates to ground truth correlation; and Reconstruction error reduction. Scale is brown to white over [-1, 1] for correlation 
and navy blue (0.05m error reduction) to red (0.05m error increase). Discontinuity edges present the great amount of error 

increase.  

 
The method encounters several drawbacks that prevent the fused result from achieving the same 

accuracy as LIDAR scans of equivalent density. Resulting range images are vulnerable to artifacts typical 

of raw interpolation, although to a lesser degree. Most reconstruction error occurs at occlusion edges 

where neighboring LIDAR points have large disparities. Regularization terms tend to over-smooth these 

edges and shading cues are ill-behaved due to cast shadows, among other reasons [Braquelaire, et al. 

2005], [Worthington 2005]. Attempting to isolate these specific edges in the image is difficult due to 

image noise, lighting and material specific effects and is not addressed in this research (see [Torres-

Mendez, et al. 2008], [Yang, et al. 2007]). Specularities in the environment were ultimately just a minor 

issue.  
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Figure 63. Scenes with Poor Results. Irradiance compensation breaks down when the robot approaches too near a wall (left). 
A large open area is not sufficiently illuminated by the robot’s light source (right).     

 

6.1.5 Discussion 

A method was presented that fuses actively illuminated CCD imagery and LIDAR data. The method 

demonstrates increases in range accuracy of up to 20% on experimental data over interpolation and 

increases in measurement density of up to 70x using the experimental setup. The improvements are a 

result of calibrated imaging using additional knowledge of the image formulation model to reconstruct a 

3D observation of the scene. This research demonstrated the efficacy of multi-sensor mapping systems 

as well as calibrated imaging for field robots. 

Perhaps the greatest argument for range/image super-resolution is that it is easily bootstrapped to 

existing systems. Subterranean robots already require light sources for photography as well as range 

sensors for mapping and many high-throughput commercial scanners feature co-located cameras. The 

general use of illumination information for super-resolution is also applicable to other environments in 

the domain. Planetary robots are likely to encounter highly diffuse environments (i.e. Mars) or 

characterizable reflectances on bodies lacking scattering atmospheres (i.e. moon, asteroids). Such 

development is likely to also increase the safety of exploration and prospecting on the moon, where 

sensing is secondary to payload and comes at a premium cost.  
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6.2 Image-Directed Sampling for Geometric Modeling of Lunar 

Terrain 

 

 

Figure 64. Approximate Spatial Uniformity from Adaptive Sampling.  

 
Despite proliferation of motion-coupled industrial scanners in field robotics, there remain important 

applications which require actuated sensors and intentional sampling. These applications must consider 

the question of: "Where to sample the data?" Planetary exploration is perhaps the best example of the 

need to plan geometric sampling. Correct photometric and geometric classification of rocks and craters 

could enhance automated sample collection and manipulation for drilling on science missions. Steered 

and optically reconfigurable flash LIDAR is of great interest in automated planetary landing for its 

capability in handling a spectrum of ranges and scales. Lastly, cooperative orbital and ground mapping, 

where the robot itself is a bore-sighted, Dirac sampler, will likewise benefit from a saliency-based 

approach to resolving terrain obstacles first detected in aerial sensing [Jones, et al. 2012]. In these 

applications the importance of intelligent sampling is twofold: (1) the relative expense of range scanning 

places a premium on sampling well and (2) the requirements of model quality dictate the application. 
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Figure 65. Automated Lunar landing is one possible application of image-directed sampling. A robotic lander (left) must 
model the near-field terrain to select the best landing site closest to a location of interest. Images generated during descent 

(right) can guide scanning with a laser altimeter to resolve regions of ambiguity. [Lander photo courtesy Red Whittaker, 
CMU; Apollo image AS15-M-0103 from NASA/JSC/ASU].     

 
The quality of 3D reconstruction from point measurements is a function of the density, distribution and 

order of sampling. Only grid-based or uniform angular sampling strategies – which are commonly used - 

inform a priori the total number of readings required to scan a scene from a single viewpoint. In spite of 

this, these are poor sampling strategies for reconstruction. Triangulation of the resultant point clouds 

produces glaring artifacts like polygonal slivers and incorrect connectivity.  Aliasing of grid-based 

approaches creates high gradient planes out of depth discontinuities. Wasteful and duplicate 

measurement increases sensing time for little information gain. These effects are particularly 

problematic in applications where the 3D detail is used in object recognition or understanding. One of 

the compelling motivations of this work stems from the observation that sensors which are not limited 

by grid sampling are the same (low-throughput) sensors which would most benefit from sampling in a 

principled manner.  

 

Cameras are natural complements to range sensors; with the principles of Lumenhancement, it is 

possible to utilize color imagery to direct range sensing of a scene to avoid artifacts. At the core of this 

Image-Direct Sampling (IDS) approach is the observation that under planetary appearance assumptions, 

the frequency content of color images correlates strongly with that of geometry images. By sampling the 

scene with Nyquist-sufficient density distribution and by utilizing camera information to plan such a 

sampling, vast improvements can be made in both the quality and efficiency of range sensing.  
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This case study identifies frequency features for use with the image-directed scanning approach, 

compares feature performance based on reconstruction metrics and demonstrates new sensor designs 

and visualization techniques which utilize this paradigm. The advantages of diffuse planetary 

environments are discussed in tailoring domain-specific salient image features. Lastly, the 

aforementioned applications are used to test the efficacy of the approach.  

6.2.1 Foundational Work 

The image-directed sampling approach can be seen as a complementary approach to that detailed in the 

super-resolution study and in [Wong, et al. 2009]. Specific motivations for sampling arise from the 

observation that the quality of geometric fusion depends as strongly on the quality of the underlying 

range data as it does on the image-based shape estimation. By affecting the nature of range samples, 

this approach can be utilized in tandem with a spectrum of traditional fusion techniques [Diebel, et al. 

2005] to significantly enhance range models.  

Research towards determining and generating optimal point samples is well documented. Work of 

particular note includes [Martinez, et al. 2007], which devised a method to reduce the post-processing 

time and increase the convergence probability of multi-scan alignment by storing only high-saliency 

points from scans. Related multi-view extensions of the sampling problem include the body of next-best-

view work [Shahid, et al. 2007], [Mark, et al. 2010]. Frequency content is also distinguished as a strong 

predictor of novelty in exploratory map building in [Thompson, et al. 2008], specifically for planetary 

terrains. 

Wavelets and other multi-scale frequency features are widely used in data understanding and 

reconstruction. They include approaches to LIDAR [Wei, et al. 2006] and intensity images [Loupias, et al. 

2000], [Achanta, et al. 2009]. In particular image based approaches have been successfully used in 

interest seeking for planetary science [Dunlop, et al. 2007]. Range and intensity fusion with wavelets has 

also been studied for forest region mapping [Wang, et al. 2007].  

While image-directed sampling with Lumenhancement draws inspiration from prior work, it 

distinguishes itself in two important aspects. Prior approaches have enhanced unstructured range data 

using image content in a post-processing manner, this work tightly couples image analysis in the range 

acquisition phase. The scanning process is redesigned from the ground up to produce models which 

exhibit density characteristics - such as spatial uniformity - that are intrinsically advantageous for fusion 

or volumetric reconstruction from a single view. Thus, this approach supplements many of the multi-
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view techniques described above. Secondly, this work is motivated by analysis of surface reflectance in 

planetary appearance which can constrain image features to physics-based analogues. The properties of 

features are not explicitly considered for detection, recognition or other high-level purposes here, as 

these are well-studied.  

6.2.2 Frequency-Based Modeling 

Frequency is one of the most effective predictors of information content in a signal. Continuous time-

varying signals can be decomposed into their frequency components by utilizing a number of different 

transforms to the frequency domain. There is no exact definition of this domain, but transforms 

generally have desirable properties that indicate the change-over-time of the signal; other closely 

related concepts include “saliency” and “compressibility”. One such common procedure is Fourier 

analysis, which decomposes signals as a (possibly infinite) sum of sinusoids of varying periodicity. Lower 

frequencies are data content that represent bias offsets and trends while higher frequencies contain 

details and sensor noise. The envelope of frequencies describes how the signal changes at all scales.  

The frequency components of range models cannot be directly measured. The only sensors that exist for 

range modeling are Dirac samplers such as Time-of-Flight and Triangulation, both which produce point 

estimates. It is therefore prudent to consider the Nyquist sampling theorem when reconstructing a 

scene from sub-sampled points. Given a band limited signal of bandwidth B  defined as its Fourier 

Transform: 

 

2( ) ( )

( ) 0    

i ftX f x t e dt

X f f B






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
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the original signal can be reconstructed exactly by a sub-sampling with a uniform frequency of rate sf  

and interval T , where:  

 2sf B  (6.15) 

 
1

s

T
f

  (6.16)  

Paraphrased, the theorem states that a sufficient condition to prevent aliasing is a uniform sampling 

rate at twice the highest frequency present in the signal [Forsyth, et al. 2002]. In signals practice, a fixed 
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sampling rate much greater than the Nyquist frequency is often used, but that approach is often not 

possible in LIDAR modeling for the range of resolutions or the fixed number of samples desired.  

It is common knowledge that the areal density of points affects the reconstruction accuracy; an ideal 

plane is perfectly described with 3 non-collinear points, while a step-edge cliff requires many points. The 

Nyquist theorem applies more generally to non-uniform samplings to say that a signal can be perfectly 

reconstructed if the average sampling frequency satisfies Nyquist [Landau 1967]. Moreover, perfect 

reconstruction is possible from severely sub-Nyquist spatial samples, if the signal has known compact 

support and shift invariance in the frequency domain [Aldroubi, et al. 2001]. However, this sampling has 

increased error sensitivity to a uniform approach [Venkataramani, et al. 2001].         

It is impossible in practice to know if a scene satisfies these conditions a priori. Furthermore, noise and 

sensor discretization prevent exact frequency content from ever being recovered with sampling. Thus, 

only effective use of samples can be made by apportioning low and high information areas with some 

sample weight distribution and relative regard for Nyquist. This corresponds to oft-opposing objectives 

for modeling in a frequency sense: (1) accuracy of volumetric reconstruction and (2) localization of high 

spatial resolution detail to important areas. A range of sampling weight distributions should therefore 

be explored for application-specific reasons, rather than attempting a theoretically optimal approach.  

 

 

Figure 66. Example Spatial Sampling Frequency Distributions based on application intent.    

 
There are several approaches for selecting the spatial distribution of sampling. The advantage of 

spatially uniform sampling is that the distribution of data bounds the maximum volume error in a 

polygonalized model to a function of the sample density. As true structure between two known points is 
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unlikely to differ significantly from a linear gradient, spatial uniformity imposes a simple inverse -scalar 

relationship between the number of points and the error. The restriction of a regular surface samples 

also reduces the probability of triangulation artifacts in meshing. Another distribution of interest is 

frequency-weighted, which minimizes the frequency spectrum error of reconstruction. Existing sampling 

methods do not consider the importance of regions in a frequency sense; salient feature detection is 

enhanced by contrasted but invariant discriminativity over the background. For applications like tracking 

or identification, it is more desirable to sample surfaces appropriate to their detail and independent of 

position or range. However, increased sampling of high frequency regions can also magnify noise. 

The sampling density distribution can be tuned to balance the tradeoff between global model 

consistency and local feature preservation to suit the specific application. This succinctly describes the 

approach to frequency-based modeling advocated here. Ultimately, both distributions converge at the 

macro scale, where the amplitude of surfaces is comparable to the sensing range.   

6.2.2.1 Wavelets and Range Images 

Two dimensional range images (and their geometry image cousins [Gu, et al. 2002]) are common 

manifold representations of 3D models. The wavelet transform is a simple and elegant representation of 

the spatially varying frequency content in such grid-based data. By successive subsampling and 

decomposition in a cascading filter bank, an image pyramid of detail (high frequency) and approximation 

(low frequency) coefficients is produced. If the filter satisfies specific requirements, the levels of the 

pyramid are approximations to the frequency content [Daubechies 1992]. The total energy, the sum-

squared “detail” coefficients is one indicator of the information distribution [Rosso, et al. 2006], 

[Achtuthan, et al. 2010].  

 

 
Figure 67. The frequency content of a region is proportional to local sampling density. This relationship is illustrated 
empirically by decomposition of a range image with wavelets (top), and reconstruction by downsampling a point cloud 

(bottom).  
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In the decomposition of range images, the lowest levels of a wavelet pyramid can be seen as the 

mountains and valleys of terrain, for example, while successively higher levels are increasingly 

representative of local features, like much smaller rocks. The "approximation" component provides the 

most of the shape and reconstruction volume in a scene. The Wavelet Transform will be the vehicle for 

frequency analysis in this approach.  

6.2.2.2 An Image-Directed Approach to Sampling  

Frequency-based modeling requires that the spatially localized information content of the scene be 

known a priori in order to plan a variable sampling density [Venkataramani, et al. 2001]. This approach is 

self-defeating as knowledge of the underlying frequencies requires scanning the scene modulo the 

maximum working resolution. A prior over the Nyquist frequency distribution is sought, which can guide 

spatially varying sample acquisition. Such a prior can estimated with a complementary sensor, such as a 

camera, which can instantaneously capture information with the same perspective as a range image.   

Pixel intensity is a composition of three-dimensional geometric, material and illumination properties 

projected onto a two-dimensional plane [Horn 1986]. Estimation of shape from images is woefully 

underconstrained in the general case; however, a Lumenhancement approach can be taken in planetary 

environments with constrain appearance. This work considers intensity images, whether raw or feature-

transformed, which correlate significantly with scene geometry. Features from these images are viewed 

as noisy approximations of high resolution range or geometry cues. The content of these images holds 

minutia about the spatial and frequency properties of the high density geometric sampling that cannot 

be surmised from a low density sampling alone.  

Recall the rendering equation in section 2.3, equation (2.1): 

         ˆ, , , , ,o o e o o i i i i iL x w L x w f x w w L x w w n dw


    (6.17) 

As shown previously, it can be reduced to manageable form (6.22) using the assumptions of planetary 

environments. 
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These assumptions are barren (6.21), dry (6.20), rocky (6.19) and simple illumination (6.18). Thus, the 

image content is related to the geometry by a differential operation (6.22). The frequency relationship 

between a signal parameterized as ( , )z f x y  and its gradients 
xp f and 

yq f  is given by 

[Frankot, et al. 1988], [Agarwal, et al. 2006]:  

   2 2

( , ) ( , )
,f

uP u v vQ u v
Z u v i

u v


 


 (6.23) 

where  ( , )fZ F f u v denotes the Fourier transform of the geometric height field, and ( P ,Q ) the 

Fourier transforms of its gradients. Therefore, it is possible to recover a Nyquist-optimal sampling of 

scene geometry given prior information from a perfect intensity image of the scene. However, the 

differentiation operation does have the undesirable effect of magnifying noise, which is often a high-

frequency component. For this and reasons mentioned previously, heuristic approaches for artifact 

reduction are advocated. Moreover, this analysis assumes minimal cast shadowing (similar to the barren 

constraint), as these introduce high-frequency edges into the image. 
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Figure 68. Image-Directed Sampling Process. (1) Intensity Image features generate a sampling probability map. This map 

approximates the true surface frequencies of the scene. (2) Optimal samples are selected using the probability map and 
acquired with a manually guided LIDAR scanner. (3) The process is iterated until stopping conditions are satisfied. (4) 

Triangulation of the raw LIDAR points produces a 3D reconstruction.  

 
Figure 68 provides a high level illustration of the approach taken here. The optimal reconstruction 

problem presented here is viewed as choosing samples 
1
, ...

k k
x s s  from all possible samples 

i
s X , 

such that the reconstruction error is minimized: arg min ( )
s k

e t x X   under some interpolating 

function t . The objective is to determine a suitable prior using features from intensity images ( i ) and 

learn a mapping such that ˆ( , )
k

f i X x , where ˆ
k k

x x  is minimized.  The thesis research coins the term 

image-directed sampling for this ensemble framework.  
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6.2.3 Modeling for Planetary Robots  

Validation of the image-directed sampling approach is conducted in the specific context of lunar 

robotics. In addition to optical domain relevance for Lumenhancement, applications provide several 

opportunities to explore sampling. Private enterprises, such as the Google Lunar X-prize, have renewed 

interest in automation of landing and exploration on the moon. There is particular emphasis on creating 

high quality maps and models of the moon using robots as precursors to humans. The approach is 

explored in both aerial sensing and ground-robot sensing on the moon to demonstrate the robustness 

of the technique to scale. 

6.2.3.1 Lunar Aerial Mapping 

This section describes validation of the approach on simulated, aerial-scale lunar terrain29. This terrain is 

procedurally generated in Blender™, utilizing randomized fractal crater and rock distributions taken 

from the Surveyor 6 mission [Heiken, et al. 1991]. The data includes independent overhead depth and 

RGB values for each voxel in the scene at 5vox/m. Three different scenes were generated and are shown 

in Figure 69.  

 

 

Figure 69. Image features in diffuse environments, such as the moon, correlate strongly with geometric features. These three 

simulated lunar terrains are utilized in this work.  

 
The datasets simulate lunar sensing during terminal descent, at a scale 50m above the ground and were 

generated for related research. An automated lander, for example, might identify geometric hazards 

(rocks and craters) and divert to a suitable landing spot. Image-feature based methods have been 

proposed to identify these hazards, including detection of shadows [Hata, et al. 2004]. Howeve r, in this 

scenario a gimbaled altimeter or boresight flash LIDAR can also work in tandem with image -based 

methods to acquire a full 3D model.  

                                                                 
29

 Simulated lunar terrain is joint work of the author and documented in [Jones, et al. 2012] 
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Simulation of the sampling process includes selecting samples (voxels) from the highest resolution depth 

map, triangulating the subsamples and linearly interpolating to create a depth map at the native 

resolution. This depthmap is then compared against the ground truth digital elevation map to produce 

reconstruction error scores. Artifacts such as sensor noise are not considered in this analysis. Several 

scanning strategies were compared on this dataset. They include: 

Uniform Grid – An NxM k element uniform grid sampling across the scene, rounded to voxel edges.  

 щ(I)w   (6.24) 

where щ is the dirac comb function for grid locations.  

Uniform Random – Random sampling of k elements in the scene with each voxel receiving uniform 

weight.  

 w c  (6.25) 

Gradient Weighted – Random sampling weighted by the 2-norm of the partial image derivatives, a 

precursor to image-based edge detection. Calculated using the matlab command gradient. 

 
2x yw I I    (6.26) 

where xI  and y I are the image partial derivatives in the x and y direction respectively.  

Wavelet Weighted – Random sampling weighted by the sum-square of the wavelet detail coefficients, 

normalized by subregion size. The wavelet transform is generated with DB2 wavelet using the command 

wavedec.  
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where j  is the pyramid level and jD  are the detail coefficients at level j .   

Entropy Weighted – Random sampling weighted entropy in a 9x9 image neighborhood centered about 

the query pixel, calculated with the matlab command entropyfilt. This transform is frequently used 

as a texture cue. 
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 ( )w E I  (6.28) 

Three separate metrics were used to compare the reconstruction error between sampled depth maps 

and ground truth. These metrics each emphasize a different requirement of the model.  

Mean Squared Reconstruction Error (MSE) – Penalizes for any large difference between the 

reconstruction and the ground truth.  

  
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where ˆ( )kt x is an interpolation of k  samples from x . 

Gradient Weighted Reconstruction Error (GRAD)  – Penalizes for incorrect reconstruction at depth 

discontinuities. 
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where  is a weighting function on the range gradient. 

Saliency Weighted (SAL) – Assigns higher weight to in reconstruction salient features such as rocks and 

craters correctly. The saliency map is generated using using the Saliency Toolbox [Walther, et al. 2006].  
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Random samples were generated 20 times using each strategy and the resultant scores were averaged. 

In the case of the grid strategy, the grid was shifted horizontally and vertically so that sampling did not 

always occur in the same voxels or on the edge of the scene. Optimal linear coefficients were found 

using fminsearch. The experiments were performed with fractional sampling density of the ground 

truth resolution in log spaced increments, i.e. 1 1 1 1
2 4 8 2048, , ,...,k  . 
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Table 11. Performance of Sampling Strategies on Simulated Aerial Terrain  

Scene #1 Random Grid Gradient Entropy Wavelet 

MSE 1 1.02 0.88 0.87 1.11 

GRAD 1 1.1 1.10 1.13 1.12 

SAL 1 0.93 0.93 0.88 1.07 

      

Scene #2 Random Grid Gradient Entropy Wavelet 

MSE 1 1.01 0.87 0.85 0.99 

GRAD 1 1.05 1.12 1.16 1.12 

SAL 1 0.82 0.96 0.95 1.05 

      

Scene #3 Random Grid Gradient Entropy Wavelet 

MSE 1 0.91 0.83 0.80 1.21 

GRAD 1 0.98 1.02 1.06 1.01 

SAL 1 1.02 0.82 0.79 1.31 

 

The results of the sampling simulation are detailed in Table 11. The scores are given as the mean ratios 

of the error between random sampling and the strategy in question, weighted by inverse sample density 

(6.32) where T is the total number of voxels to select from and k  is the number of samples selected.  

 |
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1 rand k
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  (6.32) 

Thus, scores represent an improvement multiplier over random sampling. Reweighting by inverse 

density accounts for performance across the entire logarithmic sampling densities of interest while 

discounting minute reconstruction noise due to lack of selection replacement at the highest density 

trials.     

It is noted that in very sparse samplings ( 15000k  ), wavelets performed the best by far in all metrics 

(see sample curve in Figure 71). This is particularly promising when high reductions in the amount of 

geometry acquired are necessary. Wavelets perform more modestly (20% improvement) given higher 

numbers of points, as low frequency regions seem to be undersampled. Gradient and entropy 

approaches both perform relatively poorly. Gradient weighting fails because the sharpest edges occur in 

shadowed craters, not depth discontinuities. A similar problem occurs with entropy, which utilized a 

fixed scale and neighborhood. While the wavelet transform is also susceptible to overweighing shadow 

features, the multi-scale capability also captures the crater and rock features. There does not appear to 

be any significant difference between random and grid based sampling approaches (the grid approach 
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comes out marginally ahead). This is perhaps due to the fact that while grid sampling is subject to bias 

and aliasing, this is balanced by the possibility for large holes in purely random sampling. A better 

pseudo-random sampling approach for all these features might first compute a Delaunay triangulation 

within similarly valued regions to ensure well-behaved subsamples.   

6.2.3.2 Lunar Ground Mapping 

Unlike aerial sensing, which is difficult to scale for lab experimentation, high-fidelity robot scale terrain 

can be constructed with readily available materials. This section describes experimental verification of 

the approach on the lunar-like moonyard terrain (see section 5.2).  

 

 

Figure 70.  Lunar Analog Terrain with simulated overhead sun light  

 
The terrain was placed in a light simulator frame with calibrated sensor and sun-scale light source 

positions for data collection (an overhead sun position was used). Range data was collected with a 

survey-grade phase-shift LIDAR by scanning from multiple positions to ensure adequate resolution and 

elimination of range shadows. Likewise, HDR imagery was collected from multiple locations utilizing 

DSLRs. The raw LIDAR point cloud, consisting of 5million points, was colored with RGB imagery, cropped 

to the edge of the sandbox and averaged into a 971x1674 voxel (1.6M samples) orthographic digital 

elevation map. Figure 76 in the next section shows the data acquisition setup. 

As the scanner does not have independent sampling control, it was necessary to scan at maximum 

resolution, voxelize into a uniform grid and sub-select samples post-measurement for testing. 
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Quantization into lower resolution voxels enables independent readings for each position without 

interpolation and provides resilience against the natural angular biases of the sensor. 

Table 12. Performance of Sampling Strategies on Lunar Terrain  

 Grid Random Gradient Entropy Wavelet 

MSE 1.1 1 1.09 1.15 1.33 

GRAD 0.82 1 1.21 1.32 1.42 

SAL 0.96 1 1.2 1.30 1.50 

 

 
Figure 71. Comparison of selected strategies over all subsample amounts and metrics on lunar terrain model. Visually, 
wavelets are the best performers (green).  

 
The sampling strategies described in the previous section were tested and the same metrics described 

are used in this analysis without change. The results of the experiment in artificial lunar terrain  are 

summarized in Table 12. The wavelet-based sampling is clearly the best performer in this experiment 

(~40% improvement). Curiously, all of the strategies performed significantly better than in the simulated 

aerial imagery. It is believed that this effect is due to the strong cast shadows in the simulated imagery, 

while this experiment (though using real data) featured softer shadows and few large, negative features. 

While results are promising, it must be noted that this single dataset cannot be representative of the 

entire spectrum of lunar appearance and geometry and additional testing is required. 
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Figure 72. Lunar terrain model generated with image-directed sampling. (1) An extremely sparse sampling rendered with 
roughness-modulated Oren-Nayar BRDF retains useful geometry and is visually appealing. (2) The frequency map of the 

terrain generated using wavelet decomposition. (3) Detail of roughness visualization demonstrates that a data deficient 
model can retain much of the optical appearance of the highest resolution model.  

 
Visual results of terrain reconstruction using wavelet-weighted, image-directed samples are illustrated 

in Figure 72. Figure 72-1 shows a rendering of the terrain with 20 thousand sample points, representing 

an 80x density reduction from the ground truth model of 1.6 million points (Figure 72-2, bottom). As a 

result of well-placed samples, the macroscopic geometry is surprisingly well-formed for such a sparse 

mesh; there are few glaring differences when compared to the ground truth. The downsampled model is 

rendered with an inferred roughness from the wavelet decomposition. High frequency features 

estimated in the image are "painted" onto the sparse geometry by modulating the roughness term in an 

Oren-Nayar vertex shader proportional to the energy [Oren, et al. 1994]. A threshold can be applied to 

ensure major geometric features remain metrically true. This approach to visualization, coined adaptive 

surface frequency, conveys the high resolution surface characteristics to the viewer while preserving 

mesh compactness with minimal computation. Figure 72-3 further illustrates this technique. With 

roughness inference turned off, the surface is an aliased collection of triangles, but rendering with 

roughness infuses many of the characteristics of the true surface. 
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6.2.4 A Class of Image Directed Scanners  

Prior sections demonstrated the method on simulated data or utilized selective sampling on pre-

captured high resolution data. This section discusses two hardware implementations of the approach: 

one on traditional actuated sensing and the other on a novel type of independent sampling sensor.  

6.2.4.1 Sampling with Constrained Motion 

Thus far, a discrete grid based approach has been compared to random sampling approaches. Significant 

improvement was shown when random sampling is combined with image frequency estimates. 

However, it can be argued that this comparison is unfair. Few existing range sensors can acquire 

random, independent samples. Most of the applications that are considered in this work would use 

steered beam sensors if taken at the current state of sensor art. Ferret, a borehole-deployed 

underground inspection robot (Figure 73), which utilizes programmable steering is explored here. This 

robot servos a single beam LIDAR much like a lunar lander might steer a laser altimeter to scan the 

terrain, thus the two utilizations (and their appearance spaces) are very similar despite differing 

applications. 

 

 

Figure 73. A borehole-deployed underground inspection robot scans with a single beam LIDAR by actuating pan and tilt axes. 
Mechanical steering constrains the placement of the next sample based on the position of the prior sample and limits on 
rotational velocity. An independently control camera can image the scene with an LED light source.  

 
There are three classes of actuation for single-viewpoint scanning beam sensors. From a single 

viewpoint, two motion axes (corresponding to spherical coordinates) are required to sample the 
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hemisphere. Each of these axes can rotate in a single direction from one limit to another or oscillate 

between limits in the field of view. Unidirectional motion on both axes produces a three dimensional 

“coil” of readings and is energetically efficient, but mechanically complex. Oscillating motion of either 

axis produces a raster-type scan. Archetypical examples include tilting or “nodding” scanners. Lastly, 

oscillation of both axes produces a spiral-type scan.  

Independent sampling (actuation of the beam to randomly selected measurement locations) is also 

possible in some setups. This strategy is extremely inefficient for mechanical scanners as it does not 

exploit synchronized parallelism between actuation and the measurement clock. Figure 74 illustrates 

possible trajectories on an example depth map. 

 
Figure 74. Actuation Trajectories simulated on range images of a scene. (1) Linear scanning produces a coil of data parallel to 
the scene. (2) Raster scanning oscillates the sensor head on a single axis while maintaining motion on the orthogonal axis. ( 3) 

Adaptive spiral scanning oscillates both axes, varying the tightness of the inner spiral based on data collected along the outer 
spiral. (4) Independent sampling selects locations at random for acquisition. This may require erratic actuation or an 

independent sensing array.   

 
These approaches can be enhanced with data-dependent adaptive sampling strategies where previously 

measured data informs the placement of future data. Such strategies could be used to approximate 

collection of spatially uniform samples on the scene or target a variety of reconstruction properties. For 

example, by simply increasing the velocity of the tilt motion of a 1-DOF sensor in the near-field and 

decreasing velocity in the far field, an adaptive raster strategy can generate a more desirabl e model of 

the mine scene than data-independent approaches (Figure 75). However, in this case, sampling bias is 
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still present on the horizontal axis and a tradeoff exists between bounded acquisition time and 

uniformity of density in unknown scenes [Omohundro 2008].  

However, iterative refinement is utilized here to apportion the scene into manageable regions that are 

each scanned in a naïve manner. Each region has a single uniform raster density and the scanner head 

stops collecting data briefly while moving between contiguous regions. Multiple passes can be utilized to 

selectively refine regions of high importance. Models created in this manner are a quantized 

approximation of random sampling.  

 
 

 

Figure 75. Iterative refinement can be utilized in motion-constrained scanning to enable variable density sampling in regions 
while respecting the grid nature of actuation (1). A mine scene is scanned with Image-Directed Sampling using the Ferret  

borehole robot (2). Uniform surface sampling of the mine scene (bottom) illustrates much less aliasing than traditional naïve 
scanning. 

 
In addition to frequency analysis, artificial illumination can be utilized underground for 

Lumenhancement. Assumption of tunnel nature and source fall-off can be utilized to estimate the 

macroscopic shape and orientation of the environment to plan uniform-surface sampling. Surface 

normal distributions from SFS reconstructions along with material segmentation can cross-check 
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locations of high geometric frequency. Occlusion detection from multi -flash imagery can precisely 

localize sampling of edges. Figure 75 demonstrates scanning of an underground scene using iterative 

refinement with source fall-off and wavelet decomposition as sampling weight priors.  

 

6.2.4.2 Independent Sampling with Structured Light  

 

 

Figure 76. An image-directed scanner consisting of a high resolution camera optically co-located with a DLP projector (left). 
Experimental setup utilized in this paper showing mounting positions of all the sensors (right).  

 
It is of particular interest to consider the class of sensors that provide pixel-independent sampling, as 

they are capable of implementing the approach in the purest form. Perhaps the most obvious and 

common of these are structured light sensors based on digital projectors. Though, groundbreaking work 

has been conducted in camera-integrated smart laser scanners [Cassinelli, et al. 2010]. 

 

 

Figure 77. Structured Light scan volume on lunar test terrain.  
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A structured light scanner was modified to develop a proof-of-concept image-directed scanner. Figure 

76 illustrates the optical configuration of this device. A high resolution DSLR camera is optically co-

located with the projector through the use of a half-silvered mirror. The system is calibrated such that 

each pixel in the camera corresponds to an exact outgoing ray of projected light. This configuration 

enables the system to sample the exact location viewed by the camera without shadowing. Finally, a 

second camera is optically offset from the other two devices and measures depth via triangulation. This 

setup is closely related to that presented in [Fujii, et al. 2009], which is a co-located system for 

augmented reality. Image-directed sampling is implemented on this scanner as follows: the projector 

first lights all pixels so that the scene can be imaged by the DSLR and analyzed; afterwards, scanning 

proceeds in either of the two modes. 

 

 

Figure 78.  Linear gray code scanning of the lunar terrain causes errors at the finest resolution due to differences in 
underlying scene albedos (top). Image cues can direct the scanner to resample salient regions such as rocks a pixel at a time  
(bottom). Samples are shown simultaneously illuminated for illustrative purposes; scanning occurs one dot at a time. 

The first mode is ambiguity enhancement. In temporally-coded stripe scanners, the highest resolution 

stripes often result in ambiguities or errors (illustrated in Figure 78 on the lunar test terrain). Among the 

sources for these errors include the albedos and complex reflectance of materials present in the scene 

to the resolving power of the camera lens. Gray codes can alleviate this problem, but result in lower 

effective resolution when such errors occur [Salvi, et al. 2004]. Image-directed sampling can be applied 

to identify regions which require dense, accurate samples, which can then be resampled one pixel at a 
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time (reducing errors). The bottom row of Figure 78 demonstrates salient features (rocks) that require 

more samples. The locations of these samples are all illuminated by the projector for illustrative 

purposes, but are actually scanned individually. This method enabled at 25% improvement in 

reconstruction error on the lunar terrain by re-scanning 10% of samples.     

The second mode of operation explored is data reduction. Temporal coding in structured light scanning 

often precludes motion while scanning is in progress. Spatial codes, which utilize color or pseudorandom 

dot distributions, enable all depth information to be captured in a single frame. However, these 

techniques do not lend themselves to tightly-packed high resolution samples [Salvi, et al. 2004]. Image 

frequency can be utilized to plan a sampling of the scene with optimally placed dot locations. 

Reconstruction quality is thus improved while maintaining sparse samples. While not implemented 

during this thesis, the use of clique coloring in high density regions with less-accurate, simple spatial 

pattern distortion in low density regions can greatly reduce the number of colors to be discriminated.   

The key technology behind this structured light sensor is the DMD, a pixel -indepent array of 

micromirrors that can be programmed to reflect or discard light. DMD arrays are approaching cameras 

in resolution and frame rate. DMDs are much higher resolution than beam sensors and even flash LIDAR 

arrays and more importantly, require no actuation. Future intelligent sensors are envisioned which 

couple low-resolution, low-throughput range receivers, micromirrors and co-located color cameras to 

determine optimal samples in the same vein our sensor. 

6.2.5 Discussion 

An approach to image-directed, Lumenhanced scanning was described in this case study. The key idea is 

that image frequencies correlate with geometric frequency in constrained planetary environments. 

Thus, image information can be utilized as a prior in directing range scanning of a scene.  Validation of 

the approach was conducted for lunar landing and ground mapping with simulation and terrestrial 

analog terrain respectively. Preliminary results are promising: reconstruction improvements of 40% can 

be achieved over naive scanning techniques from a single viewpoint. Simple, but effective visualization 

for sparse meshes was demonstrated by combining image-estimated texture with the geometric portion 

of a lunar surface BRDF. Lastly, a hardware implementation of a pixel-independent image-directed 

scanner was developed.  

In the future, the effects of sensor noise on the approach should be quantitatively analyzed. Noise in 

both the scanner and the camera can contribute to inaccurate prediction and wasted samples. While 
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this problem was mitigated in these experiments by limiting the maximum regional density that could be 

sampled, the sensors were low noise to begin with. The ability to handle a larger number of different 

albedos could help extend this technique to related environments (such as the terrestrial underground). 

Possibilities to crosscheck albedo changes (which contribute to frequency content in images) and shape 

changes with multi-flash imagery and probabilistic albedo estimation techniques should be investigated. 

Lastly, while this approach is defeated with strong cast shadowing, these shadows can be detected and 

mitigated with a variety of active illumination.  

  



 
 

177 
 

6.3 Utilizing the Sun as a Motional Source 

Planetary applications have the great advantage of the sun. While complex illumination resulting from 

interaction of the sun with atmosphere is a detriment to terrestrial application, this thesis has 

demonstrated that the simple conditions of direct sunlight on the moon enable superior image 

understanding. Rotation of cosmic bodies produces a span of appearances related by their geometry 

and distribution of illumination30 . From the reference of any surface point however, the sun is 

tantamount to a moving source. Recording changes in appearance over time can produce information 

and reduce uncertainty about the scene beyond any single instantaneous snapshot. This section 

discusses two planetary applications that can benefit from incorporating many solar-constrained images 

using surprisingly simple vision techniques and presents some preliminary results.   

 

6.3.1 Super-Resolution Revisited 

 

Figure 79. Many images of the scene taken from a single view point with moving sun can further enhance the super-

resolution approach by utilizing photometric stereo. (1) A low resolution LIDAR model is fused with the shading estimates 
from multiple images using photometric stereo (2) to create a super-resolution model.  

 
The MRF super-resolution method described in section 6.1 Lumenhances models by incorporating high 

resolution geometric information from a single constrained image. The key idea is that surface normals 

can be recovered directly from Lambertian planetary images, as pixel intensity scales with the derivative 

                                                                 
30

 But not necessarily the angle or position of the source. 
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(gradient) of the geometry. This shape from shading (SFS) method is distinct from prior range fusion 

approaches which assume a linear relationship between image gradients and range gradients.  

However, there are many problems with estimating shape from a single image. Variegation of materials 

is perhaps the most difficult to handle. Albedo must either be estimated in a separate phase (as 

proposed here) or optimized concurrently, which has the possibility for greater accuracy, but may fail 

catastrophically for difficult scenes such as the coal mine. Sensor noise can also have profound effects 

on numerical stability or the direction of shading. Noise was mitigated in the SFS experiments by taking 

HDR images31 and using gradient direction cues – specifically tilt angle – from the low resolution LIDAR 

model. Integrability is enforced by projecting the normals onto a Fourier basis  [Frankot, et al 1988]. 

However, this method limits the improvement from images32 by destroying much of the high frequency 

information.       

Surface normals can be recovered with much greater accuracy from sets of solar-constrained images 

using a simple process called photometric stereo (see Figure 80). If the scene reflectances are 

Lambertian, image intensity can be written as the dot product of the surface normal and the light 

vector, with a scalar albedo (6.33).  
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The albedo can also be factored with the surface normal if unit vectors are not required. Exploiting this 

dot product relationship, equation (6.33) can be written in matrix form to describe image formation for 

all pixels in the scene under many lighting conditions (6.34): 

  

(6.34)

 
where ,i kE is the intensity of the k th pixel in the i th image. The light source vectors corresponding to 

each image ( iL ) are written as row vectors in the L  matrix, while k  normals are written as column 

                                                                 
31

 which reduces saturation and averages out salt and pepper noise 
32

 in an effort to l imit reductions in accuracy which are much worse 
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vectors in the N matrix. Notice that this formulation only works under the condition of single, point 

illumination for each image. This linear system of equations can be solved to recover the normal matrix 

in the least squares sense by pseudo-inversion for 3 or more images (6.35).   

 1 ˆL E N   (6.35) 

The albedo for each scene point can be recovered from the N matrix by normalizing all the vectors and 

taking the magnitude as the albedo. The implication of this formulation is that the rank of the the L  

matrix must be full, meaning that the sources must be non-coplanar on the unit sphere [Woodham 

1980]. Moreover, the accuracy of reconstruction depends specifically on a wide angular separation of 

the source between images. While this does limit the approach in equatorial lunar terrain, for example, 

there is good possibility of applying photometric stereo to lunar polar regions or on tumbling asteroids.  

 

 

Figure 80. Normal maps of the moonyard estimated from intensity images. Estimating normals from many images using 
photometric stereo produces cleaner, more accurate normals than the single image technique. Moreover, seeding the tilt 

angles with sparse range information is no longer necessary.      

 
Woodham’s photometric stereo was used to recover shape from the moonyard terrain for super-

resolution Lumenhancement. This was used as a drop-in replacement for the SFS algorithm with a single 

image without changing any other part of the MRF or method. While newer nonlinear optimization 

approaches like [Goldman, et al. 2005] and [Alldrin, et al. 2008] can estimate the BRDF along with the 

illumination from several images (thus handling non-Lambertian scenes), these methods are not 

required for robust reconstruction in planetary terrains. Lambertian reflectance and solar direction are 

givens in the domain.     

Figure 80 shows a comparison of the normal map generated using the stereo and SFS methods. The 

stereo method demonstrates less error and preservation of higher frequency detail, particular in the 
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quasi-flat regions. There is a source of error not present in the SFS method however. The equation 

assumes each pixel is lit directly from line of sight to the light source. If the images contain large areas of 

cast shadows, the accuracy of the data is affected particularly when using few images. Loss of detail can 

be seen in the moonyard data by observing the base of the large rocks, which are prone to shadowing.  

 

 

Figure 81. Shadow Maps can clearly identify shadows and occlusion edges (left). Detected edges (right) can be expanded to 

create a cost map in MRF fusion to discount for inaccurate interpolation data. Note that the color images shown are not the 
shadowed images used. These ambient images are used for visual clarity. The position of the sun goes from left to right.  

 
Shadows can be explicitly detected by observing solar motion using the method of [Raskar, et al. 2004]. 

The key idea is that by comparing the pixel value in an image with the maximum value seen across all 

images under different lighting conditions a shadow ratio kR  can be created for each image of the form:     
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Shadows can then be detected in each image by simply finding pixels where the shadow ratio is close to 

033. The caveat is that a region must be unshadowed in at least a single image for the shadow to be 

detected. However, if this not the case, there is no added detriment over utilizing raw data. Shadow 

maps of the moonyard were generated from the same set of solar imagery used to perform photometric 

stereo. Shadowed data was discard in photometric analysis with the method of [Forsyth, et al. 2002].  

The occlusion edges34 detected using Raskar’s approach are used to create a cost map for the MRF that 

discounts for range interpolation in these areas and promotes the high resolution image data Figure 81. 

Using this approach it is shown that a 64x reconstruction (8x by 8x downsampling) was enhanced 42% 

                                                                 
33

 It will  likely not be zero due to interreflections. 
34

 occlusions can be conveniently detected by traversing the source-camera epipolar lines looking for negative step 

edges. 
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over bilinear interpolation. The standard SFS method showed enhancement of 32%, meaning that the 

multi-image method exhibited a 31% improvement over a single image.     
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6.3.2 Material Classification using Gonioreflectometry In Situ 

Lunar skylights are environments of immense interest for exploration, due to a variety of 

aforementioned reasons. Mobile mapping robots which inch up to the rim may be able to peer in 

laterally, identifying the existence of a lava tube. Extreme science robots may even rappel down to the 

floor to map and gather samples. Some of these applications are described in [Jones, et al. 2012], where 

some of the data is generously loaned for this work. Many dangers that planetary surface robots may 

encounter and anomalies that must be investigated stem from material  properties, not just geometry. 

This section describes two skylight related applications which require identification of lunar materials 

from imagery. A method proposed to address these applications leverages possibility for high resolution 

orbital views of the skylight from satellite imagery over many illumination conditions.  

 

 

Figure 82. Materials can be identified with physics-based segmentation techniques. The Marius Hills skylight (left) has 
anomalous features that can inform the geology of the region. The image on the (right) shows a rock from the moonyard 
where regolith has brushed off due to the steep slopes. Lumenhancement can identify that it is a different material than the 
background, while not being fooled by other regolith covered rocks – a task difficult even for a human.  

 
Before sending a surface robot on a potentially destructive mission to explore a skylight rim, it must first 

be determined whether the rim is firm rock capable of supporting a robot’s weight, loosely compacted 

regolith, or some combination of the two. Figure 82 shows an image of the Marius Hills skylight with a 

sloped, ragged rim (red arrow) consisting of bright ripples. It is unknown if exposed bedrock can be seen 

in these images, creating convenient “stepping stones” or whether the ripples are an artifact of deep 

regolith and illumination conditions, meaning that the edge may be dangerously slippery. While the 

angle of repose determines the maximum slope regolith can be fashioned by itself, this value varies with 
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the region and soil type; these materials cannot be discriminated from this single intensity image or 

even a geometric model of the skylight.  

A second consideration exists for robots that will operate on the skylight floor.  The blue arrow in Figure 

82 shows what appears to be large boulders at the bottom of the skylight, lit by glancing sunlight. 

Likewise, it cannot be ascertained whether these artifacts are boulders, exposed bedrock or regolith 

that may present entrapment hazards. While boulders are a geometric feature, range scanning is 

unlikely to model the floor with certainty due to finite beam divergence and range error at orbital 

distances.          

 

 

Figure 83. Simulated Rendering of Moon Terrain. Materials from this thesis are utilized to generate fidelity of appearance. 
The underlying regolith-covered terrain uses a Torrance-Sparrow model, while the rocks use a Lambertian model. The 
physical model is joint work documented in [Jones, et al. 2012].   

 
A photometric stereo based approach can be used to discriminate materials assuming that they are 

actually discriminable with visible spectrum imagery. In fact, one of the stated objectives of the NASA 

LRO satellite is to infer shape from photometric methods35. Only a small modification of the approach is 

necessary for added material information.  

The matrix formulation of equation (6.34) implies albedos (i.e. materials) can be recovered directly from 

the magnitude of the surface normal vectors providing the scene is Lambertian. If the scene is non-

lambertian, neither surface normal nor albedo can be recovered or separated with accuracy. However, 

this approach can still be used to test the “diffuseness” of a scene. Residuals from least -squares 

                                                                 
35

 http://lunar.gsfc.nasa.gov/lroc.html , last visited April  2012.  

http://lunar.gsfc.nasa.gov/lroc.html
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estimation can be use to distinguish materials when only a few classes exist. Recall that the estimated 

normal matrix N is given by: 
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where 
est  are the estimated Lambertian albedos. These can be used to reproject the estimates back 

into the pixel intensity space to recover the error of estimation at each point (the residuals): 

  ˆ ˆ
estE L N  (6.38) 

 ˆE E    (6.39) 

Analysis of the histogram of error distributions ( )and the albedo map ( est ) can reveal natural classes 

of the data. Given the close reflectivity and the highly variegated nature of these materials, it is 

impossible to distinguish these materials from a single image. However differences in highlights and 

albedo are more significant across images with many illumination conditions. Thresholding of the 

histogram between the peaks of the distribution can be used for classification, or clustering can be used 

to create contiguous regions with robustness to noise. 

This is particularly effective in the lunar case, where there is a single uncommon material (rocky 

surfaces) against a much more common background (regolith). If we further set the matrix est  for all 

points to some scalar mean estimated from some known regolith pixels, the residuals become magnified 

by the slight differences in albedo (6.40), this is called the material metric. 
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This simple algorithm is tested on simulated lunar terrain from an orbital view (Figure 83). The terrain 

model has two parts, a mesh model of the undulating ground with large craters and a sparse distribution 

of much smaller rocks using the standard Surveyor distribution. The terrain is rendered with the CMU-1 

Torrance BRDF found from gonioreflectometry and the rocks are rendered with the Lambertian granite 

model. The granite uses a false diffuse albedo very close to the regolith to test the robustness of the 
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approach (real granite is much lighter). Attached shadows are rendered but not cast shadows or 

interreflection. Images are orthographic and 1000x1000 pixel resolution for a 20m x 20m area.  

A second set of data (of the same terrain) emulates a 5% salt and pepper noise from camera acquisition 

(Figure 84). As the rocks are so tiny and their appearance so similar to the numerous craters and terrain, 

a human would have great difficulty detecting even a few correctly in the example images. Depending 

on the angle and orientation of view, craters can also appear to be convex or concave as a result of 

shading ambiguity.     

 

 

Figure 84. Simulated Orbital Imagery of the Moon from Two Sun Angles. The top row simulates the effect of pixel noise in 

the camera while the bottom images are ideal. Contrast is enhanced here for viewing. Even then, it is almost impossible to 
distinguish rocks in the images because they are small and have similar appearance to the regolith. Hint: red arrows point to 
some rocks which appear as bright blips.  

 
This simulation is of course a simplification of lunar appearance; the very tops of rocks on the moon are 

likely covered with regolith making clusters of the material less consolidated and detection more 

difficult. However, there are still areas, particularly on the sides of rocks and crater rims where the rock 

is exposed. The simulated data suffices for the purposes of demonstrating the approach. Eff icacy has 
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been further demonstrated on the physical moonyard data, where lunar variegation conditions are 

more accurate (see Figure 82 above).   

 

 

Figure 85. Comparison of Segmentation between a Naïve and the proposed Material Approach. Naïve segmentation uses an 

LAB transformation and thresholding, while the material approach uses photometric stereo from several images. Both 
algorithms use mean shift clustering.    

 
Photometric material classification is compared against a naïve single-image approach. The single-image 

technique transforms the RGB data into the L*A*B* space and clusters similar pixels using mean shift. A 

final two-class separation is made by thresholding a histogram of the cluster centroids. In the multi-

image approach, residuals from RGB color channels are merged with clustering and a histogram 

threshold is utilized to generate a classification in the same way. A total of 5 images are used. Figure 85 

shows segmentation and classification using both approaches. Using only a single intensity image 

generates large clusters from shadowed regions and craters. Although rocks are a different material, 

they are simply merged into large clusters due to similarity of appearance. The material approach 

produces much better localization of feature, even in the presence of noise. In Figure 85, rocks are 

clearly shown as regions of high error.   
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Table 13. Performance of Algorithms in Material Classification  

 Ideal + Material 5% Noise + Material Ideal + Naïve Clustering 

Total Rock Pixels 6283 “ “ 

Total Regolith Pixels 1194998 “ “ 

True Positive (tp) 1144 1144 2181 

True Negative (tn) 1194998 1194980 982659 

False Positive (fp) 0 18 212339 

False Negative (fn) 5139 5139 4102 

Accuracy 0.99 0.99 0.81 

Precision 1 0.96 0.01 

 

Table 13 summarizes the results of the experiment. There were a total of 254 rocks in the simulation, 

occupying 6283 pixels of the roughly 1 megapixel image. The approaches were used to identify which 

pixels were of the regolith and the rock material. The method of clustering before classifying can be 

seen as a prior over the contiguous nature of the material appearance. In the table above, true positives 

(tp) are pixels predicted as rock which are actually rock, while true negatives (tn) are pixels predicted as 

regolith which are actually regolith, and so on.  

The results show that the multi-image method never misclassifies a rock as regolith (fp) in the ideal case, 

and there is only minimal misclassification in the case of noise. This attribute is advantageous as it can 

quickly narrow the search space of infrequent materials for manual human validation. Material 

segmentation is also relatively insensitive to noise, resulting in only 18 more pixel s being classified 

incorrectly as rock. The single-image naïve approach was less accurate and much less precise. It 

predicted many regions were rock, resulting in an increase in both the number of true and false 

positives. As the total number of rock pixels was minuscule compared to the regolith, the large 

imprecise regions are not helpful to identification. Overall, the multi-image method was about 22% 

more accurate and 100x more precise. Equations for calculating the accuracy and precision of the 

classifiers are given below.  
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It is perhaps more useful to look at spatial accuracy of the two classes. Clustering frequently 

underestimated the extent of rock regions, but predicted rock clusters were entirely contained within 

the area of real rocks, indicating high discriminativity. Figure 86 illustrates the number of rocks identified 

as a regional portion of actual rocks. Almost all of the clusters identified were within 50% of the correct 

size and shape of the actual rocks. Over half the rocks were identified with greater than 75% spatial 

accuracy. Noise affects clustering accuracy by about 10%.  

 

 

Figure 86. Number of Rocks Detected vs. Accuracy of the Cluster compared to the true region.  

 
The approach can be further extended to handle many materials with greater accuracy. There is the 

possibility of stitching satellite imagery from multiple perspectives36 using a sparse 3D model (the fusion 

concept) and parametric estimation of the BRDF at each point using nonlinear optimization. This 

approach is coined gonioreflectometry in situ. Though the exact implementation on lunar data is left to 

future work, the process is akin to that used for material gonioreflectometry documented in this thesis, 

except on a planetary scale. The problem can be further simplified with known sun direction and a 

sparse LIDAR model of the surface.   

                                                                 
36

 Multi-perspective, multi -il luminant data exists for the Marius Hills hole. However, a s of 2012 examples released 

to the public have lacked color and resolution capable for accurate material recovery.  



Chapter 7:  
 

Conclusion 

This thesis introduces an innovative view of robot application domains as appearance spaces. These 

appearance spaces provide a convenient instrument for targeting and generalizing physics-based vision 

techniques to a spectrum of optically similar environments. By exploiting optical domain knowledge 

with active illumination and intensity imaging, the quality of geometric modeling is greatly improved – a 

process coined as Lumenhancement. The efficacy of Lumenhancement has been demonstrated 

experimentally in planetary spaces, a domain with highly advantageous, constrained appearance and 

relevant application.  

 

 

Figure 87. Super-resolution modeling of this mine wall demonstrates a generational leap of model quality using 
Lumenhancement. 
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The application of Lumenhancement to planetary spaces has emphasized the need for reevaluation of 

common beliefs in robotic modeling. In particular, this thesis has shown that: 

 Despite immense prior work in robotic modeling, significant improvements are still possible with 

targeted sensing.  

 New perception techniques and sensor designs exploiting domain knowledge can bridge the gap 

between performance and generality.  

 Previously unrelated environments can be associated by their similar appearance and 

application, enabling sharing of techniques.  

 Proper environmental constraints can bring vision approaches out of the lab and into the  field; 

classical algorithms can acquire renewed significance.    

7.1 Summary of Results 

This research characterized the geometric, material and atmospheric sensor physics of the planetary 

domain using exhaustive experimentation and statistical analysis. Utili zing this knowledge, novel 

methods were developed to enhance 3D models using active illumination, including geometric super-

resolution, image-directed sampling and material classification. These methods were implemented on 

real robots and used data from actual sensors in analogous, physical planetary environments. Lastly, 

new visualization possibilities were explored to conveying these models to a human audience with 

increased effectiveness. A summary outline of important results follows:  

Domains and Appearance Spaces 
The idea of domains as appearance spaces spanning environmental geometric, material and illumination 

attributes was developed. Four constraining characteristics of planetary appearance were introduced: 

barren, dry, rocky and simple illumination. The simplifying effect of these assumptions on image 

formation was discussed along with the relationship between intensity images and geometry. Intra-

domain variation in planetary appearance was analyzed by qualitative consideration of exemplary 

environments.  

Planetary Characterization 
Material and geometric aspects of the planetary domain were characterized through experimentation. A 

commodity gonioreflectometer design was introduced, which enables rapid analysis of non-perfect and 

oversize field samples. The reflectance functions of seven planetary surface materials were recovered 
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using gonioreflectometry and contrasted with two ideal non-planetary materials. Planetary materials 

were found to be well-represented by simple Lambertian reflectance with low error. In situ analysis of 

material distributions furthermore showed that variegation is low and that even complex planetary 

spaces can be broken down into micro-environments of almost-uniform surface material. Lastly, analysis 

of representative surface and macroscopic geometry demonstrate the smoothness constraint is satisfied 

to a high degree.      

Lumenhancement Case Studies  
Case studies introduced three new, independent Lumenhancement techniques. First, fusion of LIDAR 

and camera data for super-resolution models was demonstrated for mine mapping with a mobile robot. 

Shape estimates were recovered from high resolution images take under artificial, point illumination 

and integrated with low density LIDAR readings in a Markov random field. Second, artifact-free models 

were acquired by directing LIDAR sampling of a scene using image frequency features. This technique 

was demonstrated for lunar landing application using simulated data as well as lunar surface mapping 

using an analog moonyard. A novel image-directed structured light sensor was developed to produce 

pixel-independent samplings of scenes utilizing the approach. Lastly, a method was developed to classify 

materials by recovering their BRDF through motion of the light source. This technique targets science 

autonomy applications in space exploration, such as identifying rocks.   

New adaptations of non-photorealistic rendering methods were explored for model display. Point 

rendering for super-resolution clouds demonstrated enhanced geometric continuity for dense, but noisy 

model data. Adaptive surface frequency display showed that altering the roughness of material BRDFs 

according to image frequency can enhance the realism of data-deficient meshes without increase in 

storage or computation.  

7.2 Contributions 
The significant contributions of this thesis are: 

 Innovation in the view of environments as constrained appearance spaces and the 

utilization of their properties to analyze and target sensing approaches. 

 Characterization of the planetary domain for the geometric and material properties of 

appearance.  
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 Development of Lumenhancement which enables superior quality 3D modeling by 

exploiting these appearance properties.   

 Creation of the first empirical graphics BRDF database of planetary materials utilizing 

gonioreflectometry. Further development and characterization of an optical lunar 

regolith simulant, CMU-1, enables accurate recreation of lunar appearance for future 

vision research.   

 Creation of the first expansive database of range sensor comparative performance in 

any domain.   

 Development of three new algorithms for Lumenhancement of resolution, sample 

selection and material classification. These techniques enhanced resolution by 40x, 

reduced reconstruction error by up to 40% and increased classification rates by 22% on 

experimental data.  

 Development of two novel sensors including (1) an image-directed structured light 

scanner that combines several principles of Lumenhancement at the hardware level and 

(2) a commodity gonioreflectometer that provides reflectance data for difficult, oversize 

and non-ideal environmental samples.  

 Demonstration of a class of non-photorealistic techniques – point rendering, adaptive 

surface frequency variation and displacement mapping – for visualizing Lumenhanced 

models with enhanced effectiveness.   

 Creation of the most accurate and extensive mine maps to date (in Bruceton Mine) 

using Lumenhancement. Field experimentation also conducted first surveys of and 

generated first models in Walker’s Mill Cave. These models represent significant 

improvement in quality from prior work.  

7.3 Impact 
Contributions from this thesis extend the state-of-the-art in several ways. Firstly, future underground 

applications are anchored by quantification of the physical and material properties encountered. 

Analysis of the correctness of common modeling assumptions and planetary implications to intensity 

imaging advised the performance of techniques developed here and will advise future techniques. 
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Datasets generated in this work have provided crucial training data for humans and robots alike and 

performance benchmarks for progeny not previously available. The virtual reconstructions of Bruceton 

Mine are of historical as well as technical significance. Furthermore, study of environmental variation 

within the domain and correlation with neighboring domains will guide efficient reuse of successful 

applications across a variety of environments.  

The innovations in data collection, interpretation and display presented herein denote generational 

leaps over prior work. These innovations represent a paradigm shift in targeting domain-specific sensing 

with environmental knowledge. Other outdoor robotic applications will similarly benefit from the type 

of domain considerations refined and advocated by this work. The plethora of planetary environments 

alone and the necessity of robotic operations in them promise broad technical significance for this work. 

The realism of field implementation stressed in the thesis further ensures specific implementation will 

remain practical and relevant for years to come.  

The application focus of this work will generate renewed awareness of the problems for humans in 

planetary operations and emphasize the compelling motivation for robots. The great potential of these 

modeling and visualization techniques for improving underground reconnaissance, in particular, brings 

the ideal of practical, economical subterranean robotics one step closer to reality. Ultimately,  this work 

will facilitate the proliferation of robots into these and other hazardous environments and similarly 

increase the safety of human workers.  

Lastly, robotic modeling with Lumenhancement will enable new remote scientific discoveries by 

providing unprecedented quality of data with immersive optical sensing. Lumenhanced geometric 

models will create the next MoonView™ or CaveView™ where future explorers can visit these remote 

worlds with the fidelity and virtualization expected of the human experience, but from the convenience 

of their computer.  

7.4 Future Work 

This thesis sets the groundwork for critical analysis and design for environmental appearance using 

Lumenhancement. However further investigation is still possible and necessary in planetary and other 

domains. Recommendations for future work include: 
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Further characterization of planetary materials and spaces. This work conducted characterization of 

planetary appearance in several exemplary environments. While the characterization documented is the 

most extensive to date, it is by no means complete. Lava tubes for example, are environments of great 

interest for Lunar and terrestrial application, but they are completely ignored here. Additional 

characterization of geological properties in situ – such as surface weathering – and correlation to 

appearance are also of great interest to science applications. Continued research in this area will 

contribute to greater domain knowledge for exploitation.    

Explicit evaluation of noise and algorithm sensitivity. Preliminary analysis of environmental variation in 

the planetary domain was conducted. Inferences were made regarding the effect of these variations on 

core assumptions of this work. Accuracy, error and modes of failure were discussed for each of the 

Lumenhancement techniques introduced. However, a thorough, theoretically grounded investigation of 

the effect of noise on these techniques was not conducted. Use of Lumenhancement would also benefit 

greatly from studies contrasting the relative performance of algorithms within the domain and the 

numerical significance of the planetary assumptions in bounding these errors.   

Implementation of real-time sensors on mobile robots. A class of novel Lumenhanced sensors was 

proposed in this work and a single proof-of-concept design was presented. However, more work is 

required to for the realization these technologies on mobile robots. Algorithms and hardware sensors 

should be married in common, real-time packages conducive to strap-down integration. The relative 

performance of these sensors should also be compared against traditional approaches, much like the 

range accuracy study detailed here, to inform conditions of use and future sensor designs.   

Extension of Lumenhancement to other advantageous environments and domains. Lumenhancement 

was demonstrated for planetary environments; however related environments like the seafloor and 

atmospheric surfaces (i.e. Mars) were also discussed. Techniques proposed in this thesis could apply to 

these spaces with additional considerations for atmospheric scattering and exploitation of physics based 

sensing such as polarization and multiple sources. Ultimately, the purpose of Lumenhancement is to 

generalize optical sensing in appearance-constrained spaces. Thus, conclusive demonstration of its 

efficacy is successful utilization in many other domains, such as indoor, aerial and urban robotics.    
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Appendix 

7.4.1 BRDF Polar Plots 

Polar plot slices of fitted BRDFs are included in this section for completeness. These plots illustrate a 

constant-azimuth plot of the magnitude of radiant emergence (
oL , relative to unit Spectralon normal 

incidence given by distance from origin) as a function of view elevation angle (polar angle 
o ). Incident 

angles (
i ) are modulated at 30, 60 and 90 degrees, indicated by the red vectors, to give 3 slices per 

BRDF. The full BRDF is of course continuous on the incident angle (
i ), and three dimensional. 

 

Figure 88. Reference Material BRDF Polar Plots.  
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Figure 89. Underground Material BRDF Polar Plots.  

 

 

Figure 90. Planetary Material BRDF Polar Plots.  

 


