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Abstract—Modern parallel computers could power the percep-
tion and compression algorithms small planetary rovers require
to navigate long distances, construct detailed terrain maps, and
communicate discoveries to Earth. This work identifies and
comprehensively characterizes four algorithms important to plan-
etary roving that are well-suited for parallel computing. Multiple
implementations of dense stereo matching, multi-view stereo,
image compression, and triangle mesh compression are evaluated
using the NVIDIA Jetson family of high-performance embedded
computers. Image and mesh inputs are derived from simulation
and used to evaluate the performance, power consumption, and
hardware utilization of each device as a function of time. Our
results demonstrate the promising capacity for modern embedded
computers to expand the range and pace of planetary rover
exploration.

Index Terms—autonomy, benchmark, compression, parallel
computing, perception, rover

Fig. 1. (Left) An Intel 80C85 processor powered the Sojourner rover.
(Right) The NVIDIA Xavier AGX is a modern embedded computer
with a powerful GPU designed for autonomous driving and edge AI.

I. INTRODUCTION

Small planetary rovers require powerful, efficient computing
to navigate long distances, construct detailed terrain maps,
and communicate discoveries to Earth. In many cases, the
technology hurdle for micro-roving mission architectures is
the need to perform perception tasks on-board in support of
high-cadence operations. These tasks are well-suited for an
emerging class of power-efficient computers, with hardware

accelerated support for graphics and compression, and a
promising path to space flight. There is a need to compre-
hensively evaluate the performance of planetary roving tasks
on modern embedded, parallel computers.

Past planetary rovers have driven at ponderously slow
speeds and utilize human decision making periods between
communications gaps. These architectures rely on steady op-
erations over lengthy missions to conduct science. They use
slow, heritage processors with large semiconductor feature
sizes to survive decades of exposure to cosmic radiation.
In contrast, the modern class of micro-rover missions is
commercially incentivized and limited by power source. These
missions are expected to conduct focused science investiga-
tions in a time-boxed manner, where the tempo of operations
precludes low-level human decisions and requires performing
autonomous perception on board the rover. Because micro-
rovers are not intended to survive long durations in deep space,
their total radiation exposure is limited, and they can leverage
parallel computing devices with smaller feature size [2, 15].

In this work, we select state-of-the-art implementations of
four enabling perception algorithms from the world of terres-
trial autonomous driving to analyze suitability and characterize
performance for future planetary roving. The focus is on the
imaging pipeline for autonomy - dense stereo matching for
local mapping and hazard avoidance; multi-view stereo for
large-scale 3D mapping; compression for transferring sequen-
tial imaging data over a limited communications link; and
mesh compression for efficiently transferring 3D science and
navigation results.

A common basis of comparison was developed for evalu-
ating perception as automotive datasets, such as KITTI [4],
are not relevant to planetary environments. Reference datasets
were instead generated using a combination of simulated
Lunar imagery, lunar terrain models, and images terrestrial
analogs. Performance is evaluated using the NVIDIA Jetson
series of embedded high-performance computers that combine
multiple power-efficient CPUs with a performant GPU. We
evaluate the perception benchmarks using Jetson devices and
measure their performance and power consumption. In each
case, multiple algorithmic implementations are compared with
each other and against ground truth for accuracy.

The results of this work indicate that the Jetson line specif-



ically, and embedded automotive-grade computers in general,
are promising for use in planetary applications. In particular,
we show that the Jetson computer is both suited for fully-
autonomous perception functionality and germane to the size,
weight, and power (SWAP) constraints for micro-rovers of the
10-30kg range in the latest NASA commercial Lunar surface
technology specifications [7].

II. BACKGROUND

The Sojourner rover landed on the surface of Mars in 1997
in the Ares Vallis region [14]. Sojourner was the first wheeled
vehicle to explore another planet, but it never explored more
than 12 meters from the Pathfinder lander. Its onboard com-
puter, a 2MHz Intel 80C85 processor (Fig. 1), could not
support the autonomous perception and navigation required to
explore beyond view of the lander’s cameras. In the 45 years
since Intel released the 80C85, the computational performance
and power efficiency of embedded computers has advanced
tremendously, enabling modern planetary rovers to operate far
more autonomously than Sojourner ever could.

Recent trends in the space industry have pushed the on-
board processing, power, and storage toward terrestrial in-
dustrial practices. The goal is to support more complex data
organization, autonomous decision making, intensive signal
processing and multitasking, and the coordination of large
distributed development teams [6]. One important industrial
practice is the use of commercial-off-the-shelf (COTS) de-
vices, which compete with conventional radiation hardened
components by offering the advantages of higher performance,
faster development, and lower cost appropriate for the risk
posture of short missions.

Compute Unified Device Architecture (CUDA) [9] is a
parallel computing platform and application programming
interface model that enables the use of graphics processing
units (GPUs) for general purpose processing—an approach
known as general-purpose computing on graphics processing
units (GPGPU).

ARM big.LITTLE [8] is a heterogeneous computing archi-
tecture which couples slow, power-efficient processors (LIT-
TLE) with faster, more power-hungry processors (big). All
cores share the same memory, so workloads can be swapped
dynamically between big and LITTLE cores to reduce overall
power consumption. This model would enable planetary rovers
to perform monitoring and safeguarding tasks on a small,
efficient processor and to engage a more powerful processor
only as-needed for compute-heavy tasks like perception and
planning.

The NVIDIA Jetson computers have recently emerged as a
series of powerful, energy-efficient embedded computers that
combine a GPGPU with a big.LITTLE CPU array. The series
flagship, the Jetson AGX Xavier, is the world’s first computer
designed specifically for autonomous machines. Preliminary
testing has demonstrated that these computers are viable for
space environments in missions with low total ionizing dose
and hence are promising for micro-rover use [2], [15].

III. BENCHMARK ALGORITHMS

We have identified dense stereo image matching, multi-
view stereo modeling, image compression, and triangle mesh
compression as critical algorithms for autonomous planetary
exploration with great potential for speedup by modern com-
puting. Rovers use dense stereo matching to map local terrain
for obstacle avoidance and navigation. Multi-view stereo en-
ables in-situ mapping of large-scale planetary features such as
impact melt pits, crater walls, and subterranean caves. Triangle
mesh and image compression enable small rovers to return
their exploration data to Earth over a shared, low-bandwidth
radio link.

A. Dense Stereo Matching

Stereo perception gives planetary rovers the ability to nav-
igate autonomously in an unknown environment by using
image sensors to map their surroundings in three dimensions.
Stereo cameras at the front of a planetary rover feed syn-
chronized image pairs to a stereo matching algorithm that
determines the 3D shape of the landscape ahead of the rover.
Efficient stereo matching is critical for planetary rovers. It
enables the rover to detect and avoid hazards like rocks or
craters.

Semi-global matching (SGM) [5] is a dense stereo matching
algorithm that estimates a disparity map from a rectified
stereo image pair. We evaluated three implementations of this
algorithm on each Jetson computer. To form a mission relevant
dataset, we collected images from a previously built simulation
of a Lunar rover. Stereo cameras at the front of the simulated
rover feed images into each algorithm implementation and
produce a dense disparity map. This map is then compared
to a ground truth disparity map obtained directly from the
simulation to assess the accuracy of each implementation. We
also assess the speed of each implementation by measuring
the number of input image pairs processed per second.

Because dense stereo matching is meant to run on the rover
continuously throughout the mission, we further parameterize
this experiment to account for the power modes offered by the
Jetson computers. We run each stereo matching implementa-
tion on each Jetson computer in both maximum-performance
and maximum-efficiency modes.

B. Image Compression

Small planetary rovers have been proposed to explore and
image vast terrain features on the Moon. They will explore
long distances while capturing thousands of high-resolution,
overlapping images. Because small rovers cannot carry, power,
or aim a direct-to-Earth radio, they will relay these images
to the lander, which will deliver them to Earth. In order to
return thousands of high-resolution images over the lander’s
low-bandwidth connection, significant data compression is re-
quired. Because rover exploration imagery exhibits significant
overlap between frames, we propose to use video compression
techniques onboard the rover to reduce the bit rate required to
return vast exploration imagery to Earth.



Modern computers have excellent hardware acceleration for
video compression and decompression algorithms. We assess
the Jetson computer’s performance and power consumption
when compressing (encoding) a series of terrain images. We
use the same images that are used as input to our structure
from motion pipeline. Video compression techniques leverage
the significant overlap between frames to achieve high com-
pression ratios.

C. Multi-View Stereo

Planetary rovers capture thousands of high resolution im-
ages of various geological features in order to construct a
detailed terrain map. The problem with this approach is that it
does not scale well. The images cannot be transmitted to Earth
without significant lossy compression. In many scenarios, the
best solution to this problem is to process the images on
board the rover and construct high-fidelity three-dimensional
models from the imagery. The resulting models retain all the
necessary information from the images, and redundant data can
be omitted from automatic transfer. As the rover continuously
explores the planetary surface, the models increase in fidelity
and coverage. The model can also be used by the rover to
decide which locations have sufficient coverage and which
locations require further exploration.

Structure from Motion is the process of reconstructing three-
dimensional structure from a series of images taken from
different viewpoints. Incremental structure from motion is a
sequential processing pipeline with an iterative reconstruction
component. It commonly starts with feature extraction and
matching, followed by geometric verification. The resulting
sparse point cloud serves as the foundation for the reconstruc-
tion stage, which seeds the model with a carefully selected
two-view reconstruction, before incrementally registering new
images, triangulating scene points, filtering outliers, and refin-
ing the reconstruction using bundle adjustment.

We used a dataset of images previously collected at a
sinkhole in Utah [3]. The sinkhole was determined to be a
suitable terrestrial analog for a lunar pit (Fig. 3). To assess
the reconstructed model accuracy, we used a LIDAR scan
of the sinkhole as geometric ground truth. We assessed the
Jetson computer’s performance and power consumption as it
constructed a three dimensional model of the sinkhole from
the collected images. We also assessed the resulting model
accuracy by comparing it to the LIDAR scan by calculating
point to plane deviation.

D. Triangle Mesh Compression

The result of the structure from motion pipeline is a three
dimensional structure in the form of a triangle mesh. This
mesh is textured with relevant subsections of the collected
images, and all remaining imagery is redundant and therefore
can be safely discarded. The resulting triangle mesh is there-
fore significantly smaller than the sum of the captured images.
However, this triangle mesh may still be too large in size to be
transmitted back to Earth over a shared, low bandwidth radio
link.

Fig. 2. The images and meshes used in this work were created
using the planetary rover simulation environment shown here.

A solution to this problem involves compressing the mesh
using techniques that are specifically designed to reduce
and simplify triangle mesh data structures. We assess the
Jetson computer’s performance and power consumption when
compressing a very large triangle mesh. The same triangle
mesh that is output from the structure from motion pipeline is
utilized in this benchmark for planetary mission relevance.

Fig. 3. The West Desert Sinkhole is a terrestrial pit with size
and shape comparable to pits on the Moon. The simulated pit
used in this work is derived from a LIDAR scan of the West
Desert Sinkhole.

E. Simulation Environment and Benchmark Input Data

A lunar rover simulation environment was developed and
used to create relevant inputs for benchmarking (Fig. 2).
The simulator generates terrain images from a randomized
procedural process and can accept input from pre-existing data.
A simulated stereo camera pair on the front of the simulated
rover was used to capture synchronized, rectified imagery
for dense stereo matching and image compression. Disparity
maps were ray-traced directly from the simulation geometry to
serve as ground truth for evaluating the accuracy of the stereo
matching algorithms (Fig. 4).

A simulated camera mounted on the top of the rover’s solar
panel was used to capture overlapping imagery of a simulated
lunar pit for evaluating multi-view stereo. The textured tri-
angle mesh created by multi-view stereo is compared to the
simulated terrain mesh and is used in benchmark evaluations
of triangle mesh compression.



Fig. 4. Ground truth disparity maps produced using the plan-
etary rover simulation environment are used to evaluate dense
stereo matching accuracy.

IV. RESULTS & ANALYSIS

We evaluate each benchmark on the NVIDIA Jetson TX2,
Xavier NX, and Xavier AGX devices in their maximum per-
formance modes and record the power consumption and time
required to complete each task. They were all flashed using
NVIDIA Jetpack 4.5 to ensure that they run the experiments in
a consistent, reproducible environment. All three machines run
identical software, the same operating system (Ubuntu Linux
18), and the same CUDA library (version 10).

A. Dense Stereo Matching

We have selected three implementations of the semi-global
matching (SGM) algorithm. The first (OpenCV version 4.1.1)
does not use hardware acceleration and is bound by the speed
of the Jetson computer’s CPU. The second (NVIDIA Vision-
Works version 1.6.0) and third (LibSGM) use the Jetson’s
power efficient GPU to accelerate stereo matching and offload
work from the computer’s CPU.

Frames per second Power consumption (W)

TX2 NX AGX TX2 NX AGX

OpenCV 45 77 83 2.5 3.3 6.5
VisionWorks 49 75 155 6.0 6.7 16.3
LibSGM 65 99 175 6.5 7.8 18.4

TABLE I. The number of frames processed per second and the aver-
age power consumed by each of the stereo matching implementations
running on each Jetson computer in maximum performance mode.

Frames per second Power consumption (W)

TX2 NX AGX TX2 NX AGX

OpenCV 25 18 15 0.9 1.3 1.4
VisionWorks 38 65 40 2.7 3.5 2.5
LibSGM 47 71 36 2.7 3.9 2.5

TABLE II. The number of frames processed per second and the
average power consumed by each of the three stereo matching
implementations on each of the Jetson computers in maximum
efficiency mode.

Method Disparity Error > 5%

OpenCV 27.5%
VisionWorks 23.6%
LibSGM 23.8%

TABLE III. The accuracy of each stereo matching algorithm is
evaluated as the percentage of disparity errors that are greater than
5% of the maximum disparity.

B. Image Compression

We have selected Advanced Video Coding (H264) [12]
and High Efficiency Video Coding (H265) [13] as suitable
algorithms for encoding a series of images taken by a planetary
rover. H264 is a video compression standard based on block-
oriented, motion-compensated coding. It is by far the most
commonly used format for the recording, compression, and
distribution of video content, used by 91% of video industry.
H264 is succeeded by H265, which offers between 25% to
50% better data compression at the same level of video quality,
or substantially improved video quality at the same bit rate.
Both algorithms are executed by hardware accelerators built
into all of the Jetson devices.

We use ffmpeg [1] (version 3.4.8) to produce a suitable
baseline for comparison. We run ffmpeg using default settings,
but keep the resolution, frame-rate, and bit-rate the same
between all algorithms.

Time elapsed (s) Power consumption (W)

TX2 NX AGX TX2 NX AGX

ffmpeg 614 286 103 5.8 7.2 18.8
h264 28 25 15 5.0 5.7 12.0
h265 28 27 15 5.0 5.6 11.2

TABLE IV. The elapsed time and average power required by each
Jetson computer to encode 100 images into a video

Method Compression Ratio

ffmpeg 2.9
h264 38.1
h265 37.1

TABLE V. The compression ratio achieved by each video compres-
sion algorithm when used to encode 100 images into a video.

C. Multi-View Stereo

We have selected COLMAP [10, 11] (version 3.7) as a
suitable software library for building our photogrammetry
pipeline. The software makes good utilization of the GPU
on each Jetson computer because it manages to parallelize
various stages of the pipeline. We optimize the library for
our specific use case. For example, because we have an
approximate location for each photo in our pipeline input,
we can selectively choose which images should match and
which should be skipped. We are also able to incorporate the
location of each image in the final model so that the model
is geometrically accurate. The software is run in incremental



Fig. 5. The simulated lunar pit is based on a LIDAR scan of a terrestrial pit (left). The multi-view stereo pipeline produces a photogrammetric
model of the pit (center). The point-to-plane deviation between the photogrammetric model and LIDAR ground truth (right) is less than
10cm across the majority of the pit interior.

Time elapsed (min) Power consumption (W)

TX2 NX AGX TX2 NX AGX

Feature Extraction 5 4 3 8.3 10.2 18.2
Sparse Matching 36 11 7 9.5 15.1 29.3
Bundle Adjustment 83 101 67 4.5 6.1 9.1

Dense Matching 473 373 245 8.6 10.6 18.8
Dense Reconstruction 7 5 4 4.4 5.4 9.6

Full Pipeline 604 494 325 7.1 9.5 17.0

TABLE VI. The elapsed time and average power consumed by each
Jetson computer to run each stage of the photogrammetry pipeline,
where N=796 images

batches of the input photos in order to accurately simulate the
rover taking a series of images over the course of several days.
Each batch of images consists of 796 images.

We measure the time elapsed (minutes) and average power
consumption (watts) of each Jetson computer as they run
various stages of our photogrammetry pipeline. The pipeline
is split into two halves: sparse reconstruction, which extracts
and matches features, then runs bundle adjustment to generate
a sparse point cloud; and dense reconstruction, which runs
dense image matching and reconstruction in order to generate
a high-fidelity three-dimensional triangle mesh.

The geometric accuracy of the resulting three-dimensional
model is shown in Fig. 5. The accuracy is determined by
calculating the point-to-plane deviation of the resulting model
with the LIDAR ground truth.

D. Triangle Mesh Compression

Draco is a library for compressing and decompressing
3D geometric meshes and point clouds, and is intended to
improve the storage and transmission of 3D graphics. Draco
(version 1.4.1) was selected as a suitable software library for
compressing the triangle mesh generated as a result from our
photogrammetry pipeline. We run the Draco encoder at both
its default (level 7) and maximum (level 10) compression

levels, and record the time elapsed (seconds), average power
consumption (watts), and compression ratio achieved.

Time elapsed (s) Power consumption (W)

TX2 NX AGX TX2 NX AGX

libzip 698 586 351 4.74 5.89 9.6
draco (7) 192 120 81 4.60 5.80 9.3
draco (10) 469 310 199 4.50 5.70 9.3

TABLE VII. The elapsed time and power consumed to compress the
triangle mesh terrain model

Method Compression Ratio

libzip 1.6
draco (7) 14.4
draco (10) 16.7

TABLE VIII. The compression ratio obtained by each of the triangle
mesh compression algorithms

We use libzip (version 3.0) to produce a suitable baseline
for comparison. We run libzip to compress the same triangle
mesh at its maximum compression setting.

E. Analysis and Discussion

Of the three devices tested in our work, the Jetson Xavier
NX delivers the greatest performance per watt, and the Jetson
Xavier AGX offers the greatest absolute performance. All
three devices tested in this work are capable of delivering
the necessary compute capability for autonomous planetary
roving. In our estimation, the Jetson NX provides the most
desirable balance of capability and SWAP efficiency for rovers
in the 10-30kg class, which is a critical threshold for NASA’s
Commercial Lunar Payload Services (CLPS) programs.

Each Jetson device can be configured appropriately to be
as powerful or as efficient as required for a mission. Different
power modes on the Jetson can be configured and customized
to turn cores on or off dynamically depending on the task at
hand and energy constraints.



Our experimental results from each benchmark have re-
vealed several areas of future work to improve algorithm
performance and reduce average power consumption. Dense
matching is currently the largest bottleneck of our structure
from motion pipeline. Runtimes for structure from motion
can be decreased by substituting this step for a patch-based
or adaptive-resolution method. Large disparity errors in all
stereo matching algorithms we tested indicate the need for
new matching features better suited to planetary terrain.

V. CONCLUSIONS

The results of this work identify and characterize four
tasks with principal importance in planetary roving with high
potential for parallel speed-up. We evaluate a proposed family
of flight-forward compute modules, the NVIDIA Jetson, for
these tasks. To parameterize computational performance, a
novel mission-relevant dataset is developed. We present the
first benchmark evaluation of modern embedded computing
modules as they apply to planetary rover perception, mapping,
and communication. Through careful empirical analysis, we
show that the NVIDIA Jetson is well-suited for planetary
roving, in terms of overall performance, power consumption,
and hardware utilization. These results pave the way for future
study of the Jetson family of compute modules and their
applications to planetary rover exploration.
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